(As of Dec 21, 2021

[1]      A. Alhammadi, B. Bijeljic, M. Blunt, X-ray micro-tomography datasets of mixed-wet carbonate reservoir rocks for in situ effective contact angle measurements, (2018). https://doi.org/10.17612/P7VQ2G.

[2]      A. Alhosani, Q. Lin, M. Blunt, B. Bijeljic, Pore-scale X-ray images of steady-state three-phase flow in a water-wet sandstone, (2021). https://doi.org/10.17612/G5M1-QY82.

[3]      N. Alqahtani, P. Mostaghimi, R. Armstrong, A Multi-Resolution Complex Carbonates Micro-CT Dataset (MRCCM), (2021). https://doi.org/10.17612/3T36-Q704.

[4]      M. Andrew, Vaca Muerta FIB-SEM, (2019). https://doi.org/10.17612/P7038S.

[5]      M. Andrew, Bijeljic, Branko, Blunt, Martin, Doddington Sandstone, (2020). https://doi.org/10.17612/NHDA-WZ02.

[6]      R. Armstrong, P. Mostaghimi, Moura Coal, (2017). https://doi.org/10.17612/P7V888.

[7]      C. Arns, Shikhov, Igor, Arns, Ji-Youn, Momin, Ahad, Prodanovic, Masa, Evaluation of Capillary Pressure in Digital Rock Petrophysics, (2020). https://doi.org/10.17612/NS3P-DH20.

[8]      S.-H. Baek, T.-H. Kwon, X-ray CMT Images of Abiotic Carbonate Precipitation in Porous Media from a Supersaturated Solution, (2018). https://doi.org/10.17612/P70963.

[9]      W.-B. Bartels, M. Rücker, M. Boone, T. Bultreys, V. Cnudde, Spontaneous Imbibition, (2019). https://doi.org/10.17612/P7M96P.

[10]    L. Beckingham, I. Anjikar, F. Qin, Paluxy sandstone, (2020). https://doi.org/10.17612/6ZM1-AE74.

[11]    C.F. Berg, Fontainebleau 3D models, (2016). https://doi.org/10.17612/p75p4p.

[12]    S. Berg, R. Armstrong, A. Weigmann, Gildehauser Sandstone, (2018). https://doi.org/10.17612/p7ww95.

[13]    W.-B. Bertels, M. Rücker, T. Bultreys, Spontaneous Imbibition, (2018). https://doi.org/10.17612/P7M96P.

[14]    A. Bihani, H. Daigle, Bidisperse sphere packs generated under gravity, (2019). https://doi.org/10.17612/P74T20.

[15]    A. Bihani, H. Daigle, M. Prodanovic, K. Milliken, J. E. Santos, Mudrock images from Nankai Trough, (2020). https://doi.org/10.17612/BVXS-BC79.

[16]    T. Bultreys, M.A. Boone, T. De Kock, G. De Schutter, P. Vontobel, L. Van Hoorebeke, V. Cnudde, Massangis Jaune carbonate, (2017). https://doi.org/10.17612/P7RG6N.

[17]    T. Bultreys, De Boever, Wesley, Belgian Fieldstone, (2020). https://doi.org/10.17612/C13T-AH38.

[18]    T. Bultreys, L.V. Hoorebeke, V. Cnudde, Estaillades Carbonate #2, (2018). https://doi.org/10.17612/P7C09J.

[19]    T. Bultreys, J.V. Stappen, T.D. Kock, W.D. Boever, M.A. Boone, L.V. Hoorebeke, V. Cnudde, Savonnières carbonate, (2017). https://doi.org/10.17612/P7W88K.

[20]    M. Carrel, M.A. Beltran, V.L. Morales, N. Derlon, E. Morgenroth, R. Kaufmann, M. Holzner., Biofilm Imaging in Porous Media by Laboratory X-ray Tomography: Combining a Non-Destructive Contrast Agent with Propagation-Based Phase-Contrast Imaging Tools, (2017). https://doi.org/10.17612/P7Q07W.

[21]    B. Chen, Grain-scale Failure Mechanism of a Porous Sandstone in Brazilian Tensile Test, (2021). https://doi.org/10.17612/P990-B662.

[22]    X. Chen, D.A. DiCarlo, CO2-brine drainage in Berea (20 C, 10.3 MPa), (2016). https://doi.org/10.17612/P7D59K.

[23]    X. Chen, D.N. Espinoza, J. Luo, N. Tisato, P. Flemings, Methane Hydrate Formation micro-CT images, (2020). https://doi.org/10.17612/CP8P-7917.

[24]    X. Chen, D.N. Espinoza, Pore habit of clathrate hydrate, (2017). https://doi.org/10.17612/P78Q1T.

[25]    X. Chen, D.N. Espinoza, M. Prodanovic, R. Verma, Hydrate-Bearing Sand, (2017). https://doi.org/10.17612/P7J08Q.

[26]    X. Chen, S. Gao, A. Kianinejad, D.A. DiCarlo, Supercritical CO2 - Brine Primary Drainages (40-60C, 8-12 MPa), (2017). https://doi.org/10.17612/P7D01T.

[27]    Y. Chen, Q. Kang, A. Valocchi, H. Viswanathan, Dataset of 3D fluid phase distribution from drainage simulations (in micromodel and real rock geometry) examining inertial effects, (2019). https://doi.org/10.17612/1FHH-Q252.

[28]    D. Crandall, A. Cook, E. Oti, E. Buchwalter, Keathley Canyon 151 Sediment Cores, (2018). https://doi.org/10.17612/p7hx0p.

[29]    L. Dalton, Sessile Drop and Micro-CT Data for Six Sandstone Formations, (2020). https://doi.org/10.17612/GEV9-3M79.

[30]    L. Dalton, DRP Visualization Challenge: Contact Angle Evolution, (2021). https://doi.org/10.17612/2QYQ-WS65.

[31]    L. Dalton, D. Crandall, Micro-CT scCO2-Brine Data, (2018). https://doi.org/10.17612/P7PT06.

[32]    L. Dalton, D. Crandall, J. McClure, M. Fang, R. Armstrong, Micro-CT scans of Mt. Simon sandstone at residual conditions used for contact angle measurements and analyzing the influence of clay regions, (2020). https://doi.org/10.17612/TY8R-7Z52.

[33]    S. Eckley, R. Ketcham, 4D Imaging of Acid Leaching in Porous Carbonado Diamond, (2019). https://doi.org/10.17612/MPGF-FC78.

[34]    D.N. Espinoza, Naturally fractured coal sample, (2015). https://doi.org/10.17612/p7qp4n.

[35]    D.N. Espinoza, Sheared coal sample, (2015). https://doi.org/10.17612/p7vc7x.

[36]    L. Ferreira, R. Surmas, M. Silva, R. Peçanha, Carbonates: Porosity and permeability voxel to voxel, (2020). https://doi.org/10.17612/V09Y-AW80.

[37]    J.L. Finney, Finney packing of spheres, (2016). https://doi.org/10.17612/P78G69.

[38]    L. Frash, J.William Carey, T. Ickes, Triaxial Direct-Shear In Situ Microtomography, (2018). https://doi.org/10.17612/p7037d.

[39]    S. Fuchs, D. Crandall, M. Gill, J. Moore, B. Kutchko, Foamed Cement API RP 10B-4, (2018). https://doi.org/10.17612/p7gd4q.

[40]    P. Ganesan Krishnamurthy, D. DiCarlo, T. Meckel, Mimicking Geological Fabrics for Multiphase Flow Experiments, (2019). https://doi.org/10.17612/ZPKF-ZH16.

[41]    G. Garfi, Q. Lin, S. Berg, S. Krevor, Berea sandstone: X-ray micro-CT imaging of waterflooding in a water-wet and a mixed-wet sample, (2020). https://doi.org/10.17612/Y7YD-H265.

[42]    C. Garing, M. Voltolini, J.B. Ajo-Franklin, S.M. Benson, Residual air in air/brine systems, (2017). https://doi.org/10.17612/p7zw24.

[43]    S. Ghanbarzadeh, M.A. Hesse, M. Prodanovic, J.E. Gardner, Synthetic rock salt, (2015). https://doi.org/10.17612/P7MW21.

[44]    S. Ghanbarzadeh, M. Prodanovic, Meteorite NWA 2993: A primitive achondrite, (2016). https://doi.org/10.17612/P7NP41.

[45]    S. Ghanbarzadeh, M. Prodanovic, M.A. Hesse, Texturally Equilibrated Pore Networks, (2016). https://doi.org/10.17612/P79G6M.

[46]    E. Goldfarb, K. Ikeda, M. Prodanovic, R. Ketcham, N. Tisato, Effects on Digital Rock Physics Models from Variable Computed Tomography Scans Settings, (2021). https://doi.org/10.17612/RADZ-GV42.

[47]    E. Goldfarb, M. Prodanovic, R. Ketcham, N. Tisato, K. Ikeda, Targeted CT: Predictive Digital Rock Physics Models Without Segmentation, (2020). https://doi.org/10.17612/9X96-AC88.

[48]    E. Guiltinan, J. Estrada Santos, Q. Kang, B. Cardenas, D.N. Espinoza, Fractures with variable roughness and wettability, (2020). https://doi.org/10.17612/P522-CC94.

[49]    H. Gyeol, T.-H. Kwon, Fines migration in sediments containing methane hydrate during depressurization, (2018). https://doi.org/10.17612/p7r377.

[50]    Z. Heidari, A. Posenato Garcia, Austin Chalk, (2016). https://doi.org/10.17612/P73011.

[51]    A. Herring, A. Sheppard, M. Turner, L. Beeching, Multiphase Flows in Sandstones, (2018). https://doi.org/10.17612/p7mh3m.

[52]    F. Hofmann, E. Cooperdock, Detrital magnetite grains scanned to detect inclusions for cosmogenic 3He exposure dating, (2021). https://doi.org/10.17612/HEHJ-W597.

[53]    R. Huang, A. Herring, A. Sheppard, High-resolution scans of Bentheimer sandstone core for imbibition experiments, (2021). https://doi.org/10.17612/EYP4-H102.

[54]    D. Ivonin, T. Kalnin, A MicroCT Image of Silty Loam Phaeozem Albic, (2020). https://doi.org/10.17612/B72Q-CE76.

[55]    S. Jackson, Q. Lin, S. Krevor, A large scale X-Ray micro-tomography dataset of steady-state multiphase flow, (2020). https://doi.org/10.17612/KT0B-SZ28.

[56]    Z. Karpyn, Pore scale multiphase flow experiments in bead packs of variable wettability, (2018). https://doi.org/10.17612/P7ZX0Q.

[57]    Z. Karpyn, C. Landry, M. Prodanovic, Induced rough fracture in Berea sandstone core, (2016). https://doi.org/10.17612/P7J012.

[58]    A. Kazak, S. Chugunov, Characterization of Berezov Formation Rock Samples by Digital Core Analysis, (2018). https://doi.org/10.17612/p7c96h.

[59]    R. Ketcham, Fracture in tuff, (2016). https://doi.org/10.17612/P7PP4B.

[60]    R. Ketcham, Gold grains scanned at various resolutions, (2018). https://doi.org/10.17612/p72d6r.

[61]    R. Ketcham, M. Colbert, J.-Q. Zhou, B. Cardenas, Fracture in granite, (2018). https://doi.org/10.17612/P7QX1X.

[62]    R. Ketcham, E. Cooperdock, Apatite grains, (2019). https://doi.org/10.17612/CZYH-KC13.

[63]    H. Khan, A. Gonzales, M. Prodanovic, Z. Heidari, D.N. Espinoza, Guelph Dolomite characterization, (2018). https://doi.org/10.17612/p78m25.

[64]    H.J. Khan, M. Prodanovic, A. Mehmani, D. DiCarlo, D. Khan, Capillary rise in vuggy porous media, (2020). https://doi.org/10.17612/VAMK-TA18.

[65]    H. Khan, G. Pope, Guelph dolomite, (2018). https://doi.org/10.17612/P74T1M.

[66]    H. Khan, M. Prodanovic, D. DiCarlo, Particulate straining in series and parallel vuggy configurations, (2019). https://doi.org/10.17612/rj9p-9438.

[67]    H. Khan, M. Prodanovic, D. DiCarlo, Spatial and temporal patterns in particle retention in vuggy porous media, (2019). https://doi.org/10.17612/65HS-RF92.

[68]    H. Khan, M. Prodanovic, D.A. DiCarlo, Particulate Straining in Simple Porous Media, (2016). https://doi.org/10.17612/P7K01C.

[69]    J.J. Kim, F.T. Ling, D.A. Plattenberger, A.F. Clarens, A. Lanzirotti, M. Newville, C.A. Peters, SMART mineral mapping: Synchrotron-based machine learning approach for 2D characterization with coupled micro XRF-XRD, Computers & Geosciences. 156 (2021) 104898. https://doi.org/10.1016/j.cageo.2021.104898.

[70]    A.H. Kohanpur, V. Albert, D. Crandall, Micro-CT images of a heterogeneous Mt. Simon sandstone sample, (2019). https://doi.org/10.17612/1DVH-1N64.

[71]    S. Korneev, X. Yang, J. Zachara, T. Scheibe, I. Battiato, Downscaling-based segmentation for unresolved images of highly heterogeneous granular porous samples, (2018). https://doi.org/10.17612/P71H3B.

[72]    C. Landry, Pore-scale images of trapped immiscible fluid structures in oil-wet and water-wet bead packs, (2016). https://doi.org/10.17612/p76p40.

[73]    C. Landry, M. Prodanovic, B. Hart, High-Resolution SEM Image Mosaics of Overburden Shales: Wilcox Group, Midway, Navarro, (2020). https://doi.org/10.17612/CDPP-NK46.

[74]    Z. Li, J. McClure, T. Ramstad, Bentheimer Sandstone Two-Fluid Flow Simulation Resembling Special Core Analysis Protocol, (2020). https://doi.org/10.17612/3QZ6-F710.

[75]    Q. Lin, B. Bijeljic, S. Berg, M. Blunt, Data for pore-scale imaging of displacement patterns in an altered-wettability carbonate, (2020). https://doi.org/10.17612/XWVW-9E52.

[76]    Q. Lin, B. Bijeljic, S. Berg, R. Pini, M. Blunt, S. Krevor, Pore-scale imaging of multiphase flow at steady state for a mixed-wet Bentheimer sandstone, (2020). https://doi.org/10.17612/5WAP-ZM63.

[77]    Q. Lin, B. Bijeljic, M. Blunt, Data for drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone, (2021). https://doi.org/10.17612/DN0Q-H551.

[78]    Q. Lin, B. Bijeljic, R. Pini, M. Blunt, S. Krevor, Pore-scale imaging of multiphase flow at steady state for a Bentheimer sandstone, (2018). https://doi.org/10.17612/P7167R.

[79]    J.S. Luo, M. Ramos, D. Nicolas Espinoza, Fracture Patterns in Laminated Mancos Shale, (2019). https://doi.org/10.17612/P7F38T.

[80]    A. Mascini, M. Boone, S. Wang, S. Van Offenwert, V. Cnudde, T. Bultreys, 4D oil and water flood in water- and mixed-wet complex sandstone, (2021). https://doi.org/10.17612/GEN3-2P41.

[81]    J. McClure, Fluid Configurations in a Random Sphere Packing, (2016). https://doi.org/10.17612/p7tg68.

[82]    J. McClure, Two-Fluid Micromodel Experiments, (2017). https://doi.org/10.17612/p74s31.

[83]    J. McClure, R. Armstrong, M. Fan, D. Crandall, L. Dalton, Mt. Simon Sandstone with Mineral Map, (2020). https://doi.org/10.17612/SX6N-KN96.

[84]    T. Meckel, Digital Rendering of Sedimentary Relief Peels, (2018). https://doi.org/10.17612/p77h5z.

[85]    A. Mehmani, M. Prodanovic, K.L. Milliken, Wilcox Tight Gas Sandstone, (2015). https://doi.org/10.17612/P7G596.

[86]    Y. Mehmani, H.A. Tchelepi, PNM vs. DNS Intercomparison Dataset for Transport in Micromodels, (2017). https://doi.org/10.17612/p7dm2d.

[87]    A. Menefee, B. Carey, L. Frash, W. Hicks, B. Ellis, Rapid mineral precipitation during shear fracturing of carbonate-rich shale: Supporting xCT data, (2020). https://doi.org/10.17612/S0FM-NP04.

[88]    K.L. Milliken, M. Prodanovic, M. Nole, H. Daigle, Unconsolidated muds from the Nankai Trough, (2016). https://doi.org/10.17612/p7f59w.

[89]    P. Mohammadmoradi, Fractional-wet medium (OpenFOAM File), (2016). https://doi.org/10.17612/p7x597.

[90]    P. Mohammadmoradi, Statistically Generated Medium, (2016). https://doi.org/10.17612/p7201q.

[91]    P. Mohammadmoradi, A Micro CT image of Tight Carbonate, (2017). https://doi.org/10.17612/P77Q2W.

[92]    P. Mohammadmoradi, A Multiscale Sandy Microstructure, (2017). https://doi.org/10.17612/p7pc7c.

[93]    I. Molnar, Uniform quartz - Silver nanoparticle injection experiment, (2016). https://doi.org/10.17612/P7Z59J.

[94]    C. Moon, M. Andrew, Bentheimer networks, (2019). https://doi.org/10.17612/1A36-RN45.

[95]    C. Moon, M. Andrew, Intergranular Pore Structures in Sandstones, (2019). https://doi.org/10.17612/ZE8A-1Z13.

[96]    B.P. Muljadi, Bentheimer Sandstone, (2015). https://doi.org/10.17612/P77P49.

[97]    B.P. Muljadi, Estaillades Carbonate, (2015). https://doi.org/10.17612/P73W2C.

[98]    R. Neumann, M. Andreeta, E. Lucas-Oliveira, 11 Sandstones: raw, filtered and segmented data, (2020). https://doi.org/10.17612/F4H1-W124.

[99]    H. Ni, T. Meckel, Drainage experiment in an intermediate-scale beadpack, (2021). https://doi.org/10.17612/QXXK-WE31.

[100]  Y. Niu, R. Armstrong, P. Mostaghimi, Digital rock segmentation from micro-CT/SEM data by using convolutional neural network, (2019). https://doi.org/10.17612/97RM-TE06.

[101]  Y. Niu, Armstrong, Ryan, Mostaghimi, Peyman, Unpaired super-resolution on micro-CT sandstone by using cycle-consistent generative adversarial network, (2020). https://doi.org/10.17612/VZTT-YX38.

[102]  A. Paluszny, S. Iglauer, M. Lebedev, Residual CO2 trapping in oil-wet sandstone, (2019). https://doi.org/10.17612/VSES-Y232.

[103]  A. Patmonoaji, Y. Hu, M. Nasir, C. Zhang, T. Suekane, Micro-tomographic imaging of the dissolution of trapped nitrogen gas with and without dissolution fingering, (2021). https://doi.org/10.17612/8KC8-5B98.

[104]  J.P. Pereira Nunes, B. Bijeljic, M. Blunt, Pore-scale simulation of CO2-induced dissolution, (2021). https://doi.org/10.17612/26F4-6752.

[105]  C. Peters, J. Kim, Eagle Ford Shale: Synchrotron-Based Element and Mineral Maps, (2020). https://doi.org/10.17612/T3A6-6356.

[106]  T. Phillips, T. Bultreys, S. Van Offenwert, V. Cnudde, Stress-Dependent Fluid Flow in a 3D-Printed Rough Fracture, (2021). https://doi.org/10.17612/XGV3-1K27.

[107]  M. Prodanovic, C. Landry, A. Tokan-Lawal, P. Eichhubl, Niobrara formation fracture, (2016). https://doi.org/10.17612/P7SG6Z.

[108]  M. Prodanovic, K. Milliken, A. Mehmani, Offshore miocene sandstone (Folk McBride Collection), (2019). https://doi.org/10.17612/RN6G-FQ64.

[109]  M. Prodanovic, A. Tokan-Lawal, P. Eichhubl, Partially Cemented Tight Sandstone Fracture, (2015). https://doi.org/10.17612/p7rp4z.

[110]  T. Ramstad, A. Kristoffersen, Bentheimer Micro_CT with Waterflood, (2018). https://doi.org/10.17612/P7795W.

[111]  D. Rippner, DRP Visualization Challenge: Belgian Fieldstone, (2021). https://doi.org/10.17612/YPKM-DR34.

[112]  M. Rücker, P. Luckham, Surface structure of Ketton rock, (2019). https://doi.org/10.17612/84ER-2R73.

[113]  M. Ruecker, W.-B. Bartels, S. Berg, F. Enzmann, A. Jacob, H. Mahani, N. Brussee, C. Hinz, A. Georgiadis, C. Wagner, A time-resolved synchrotron X-ray micro-tomography dataset of a waterflood in an altered mixed-wet Ketton limestone, (2019). https://doi.org/10.17612/P7K09D.

[114]  M. Saadatfar, Grain Packing, (2014). https://doi.org/10.17612/p7h59h.

[115]  J.E. Santos, H. Jo, Synthetic fractures with varying roughness and mineralogy, (2019). https://doi.org/10.17612/P7VH5J.

[116]  J. Santos, Y. Yin, M. Prodanović, H. Khan, N. Lubbers, 3D Collection of Binary Images, (2021). https://doi.org/10.17612/NXGK-K611.

[117]  H. Saur, C. Aubourg, P. Moonen, X-ray micro-CT images of calcareous shale samples, (2021). https://doi.org/10.17612/JEK2-AX94.

[118]  K. Sawayama, F. Jiang, K, Digitalized natural rock fracture of Inada Granite, (2020). https://doi.org/10.17612/QXSA-TK92.

[119]  A. Scanziani, Blunt, Martin, Bijeljic, Branko, Garfi, Gaetano, Lin, Qingyang, Alhammadi, Amer, Dynamics of immiscible three-phase flow in a mixed-wet Ketton limestone sample, (2020). https://doi.org/10.17612/3S3K-EE20.

[120]  A. Scanziani, K. Singh, M. Blunt, Water-Wet Three-Phase Flow Micro-CT Tomograms, (2018). https://doi.org/10.17612/p7ht11.

[121]  G. Scott, Leman Sandstone SEM Images, (2020). https://doi.org/10.17612/AKY4-9A88.

[122]  G. Scott, North Sea Sandstone SEM Images, (2020). https://doi.org/10.17612/36F2-8Q45.

[123]  A. Sheppard, G. Schroeder-Turk, Network Generation Comparison Forum, (2015). https://doi.org/10.17612/P7059V.

[124]  A. Singh, P. Mostaghimi, K. Regenauer-lieb, R. Armstrong, S. Walsh, Grayscale REV Analysis, (2020). https://doi.org/10.17612/8F3W-EM15.

[125]  K. Singh, M.J. Blunt, High resolution X-ray micro-tomography datasets for in-situ effective contact angle analysis in carbonate rocks, (2018). https://doi.org/10.17612/P7D95F.

[126]  M. Souzy, H. Lhuissier, Y. Méheust, T. Le Borgne, B. Metzger, Experimental 3D Velocity Field in Random Sphere Packing, (2020). https://doi.org/10.17612/HDP8-0149.

[127]  C. Spurin, S. Krevor, M. Blunt, T. Bultreys, Hexadecane and brine injected into Estaillades carbonate - steady-state experiment, (2020). https://doi.org/10.17612/4PX8-6X12.

[128]  C. Spurin, S. Krevor, M. Blunt, T. Bultreys, Nitrogen and brine injected into Estaillades carbonate - steady-state experiments, (2020). https://doi.org/10.17612/MH6H-F504.

[129]  C. Spurin, S. Krevor, M. Blunt, T. Bultreys, Decane and brine injected into Estaillades carbonate - steady-state experiments, (2021). https://doi.org/10.17612/CD7A-Y955.

[130]  C. Sun, J. McClure, P. Mostaghimi, A. Herring, S. Berg, R. Armstrong, Bentheimer Sandstone for Analyzing Wetting Phenomena, (2020). https://doi.org/10.17612/P8FQ-6Y93.

[131]  A. Suzuki, 3D printing of fracture networks, (2021). https://doi.org/10.17612/YGCK-ZJ59.

[132]  S. Van Offenwert, T. Bultreys, M. Boone, V. Cnudde, Saturated solute transport micro-CT dataset in Savonnières limestone, (2020). https://doi.org/10.17612/YPVB-JG13.

[133]  S. Van Offenwert, T. Bultreys, V. Cnudde, Saturated solute transport micro-CT dataset in sintered glass and Bentheimer sandstone, (2019). https://doi.org/10.17612/5WW0-GH34.

[134]  S. Van Offenwert, Tom Bultreys, Veerle Cnudde, Marijn Boone, Raw micro-CT data of solute transport in porous media, (2020). https://doi.org/10.17612/RWVY-AC93.

[135]  R.A. Victor, M. Prodanovic, Dual-Energy Medical CT in Carbonate Rocks, (2017). https://doi.org/10.17612/P74368.

[136]  R. Victor, M. Prodanovic, Low Reynolds number velocity simulations in sandstones, (2016). https://doi.org/10.17612/P7BC78.

[137]  N. Wang, Y. Liu, L. Cha, M. Prodanovic, M. Balhoff, Ferrofluid displacement in a simple 2.5D micromodel, (2021). https://doi.org/10.17612/2XZJ-FD68.

[138]  Y.D. Wang, R. Armstrong, P. Mostaghimi, A Diverse Super Resolution Dataset of Digital Rocks (DeepRock-SR): Sandstone, Carbonate, and Coal, (2019). https://doi.org/10.17612/S3M9-E024.

[139]  Y.D. Wang, P. Mostaghimi, R. Armstrong, A Super Resolution Dataset of Digital Rocks (DRSRD1): Sandstone and Carbonate, (2019). https://doi.org/10.17612/P7D38H.

[140]  D. Wildenschild, Three-phase drainage-imbibition cycle, (2020). https://doi.org/10.17612/NJGZ-DY30.

[141]  D. Wildenschild, D. Meisenheimer, Quasi-equilibrium air-water drainage and imbibition X-ray microtomography experiments in glass bead packs followed by one-step experiments at varying flow rates, (2020). https://doi.org/10.17612/DBWQ-3K38.

[142]  D. Wildenschild, D. Meisenheimer, Time-resolved X-ray microtomography non-equilibrium and quasi-equilibrium two-phase flow in glass beads, (2021). https://doi.org/10.17612/XC0W-A283.

[143]  B. Wortham, Stalagmite ML-1 NCT and XCT scanning, (2019). https://doi.org/10.17612/P78H4W.

[144]  R. Xu, M. Prodanovic, C. Landry, Pore scale study of water adsorption and subsequent methane transport in clay in the presence of wettability heterogeneity, (2020). https://doi.org/10.17612/EV4G-KX65.

[145]  B. Yang, B. Wang, A full-size fracture of tight sandstone induced by water, N2 and CO2, (2020). https://doi.org/10.17612/4W5E-DQ86.

[146]  Y. Yang, S. Iglauer, Stress Sensitivity of Fractured and Vuggy Carbonate, (2019). https://doi.org/10.17612/5FNC-1310.

[147]  Y. Yang, Y. Li, C. Liu, S. Iglauer, Gas-Water Flow in Carbonates, (2021). https://doi.org/10.17612/HSQ8-FH48.

[148]  S. Zou, Y. Liu, J. Cai, R. Armstrong, Pore scale in situ imaging of multiphase flow at steady-state for an altered mixed-wet Bentheimer sandstone, (2020). https://doi.org/10.17612/3ST3-KC82.