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A B S T R A C T

Reinjection is an integral part of operating enhanced geothermal systems. Since cooling of reservoirs may
occur due to cold-water injection, the possible effects of injection should be assessed. Subsurface structures,
especially surface areas of flow channels connecting injection and production wells, determine the onset and
rate of thermal breakthrough at a production well caused by reinjection. Previously, a method to estimate the
surface area using temperature data was proposed (temperature-based surface area estimation method), which
has only been applied to synthetic data from numerical simulation models and field data from geothermal
fields with limited structural information available. In this study, we validated the temperature-based surface
area estimation method through thermal flow experiments using a 3D-printed fracture network with known
structural and physical properties. Based on measured temperature data, the flow-channel surface area was
estimated with an approximate Bayesian uncertainty quantification method. The estimated uncertainty bounds
were in good agreement with the design of the 3D-printed sample. We also applied the estimation method
to field data from a well-studied experimental field. The estimates were consistent with other geophysical
observations and previous numerical modeling studies, which had been used previously to probe fluid pathways
in the field. It is expected that the thermal response estimation approach validated in this study can be
useful for designing reinjection strategies. Furthermore, 3D-printed flow-channel networks may be useful for
validating other estimation methods.
1. Introduction

For geothermal operations, reinjection is a standard way of dispos-
ing of waste water from power plants and recharging reservoirs (Ste-
fánsson, 1997; Axelsson, 2008; Kaya et al., 2011; Rivera Diaz et al.,
2016). A major obstacle is that reinjection can result in cooling of
production wells (thermal breakthrough), since it returns water that
is colder than the reservoir and thus lowers the temperature in the
reservoir (Horne, 1982; Mora and Torres, 2013; Fridleifsson et al.,
2006). For sustainable geothermal development, the advantages of
maintaining the reservoir pressure and fluid volume through reinjection
need to be balanced with the disadvantages of the associated thermal
breakthrough.

Tracer testing is a method to characterize fluid flow and can be used
to understand the influence of injected water on geothermal reservoirs.
A conventional tracer test involves adding a chemically inert solute
tracer to injection fluid to track its migration. Many chemical tracer
tests have been conducted in geothermal fields (Robinson and Tester,
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1984; Rose et al., 2004; Aksoy et al., 2008). Typical solute tracers are
used to detect well connectivity (Egert et al., 2020; Rose et al., 2001;
Sanjuan et al., 2006), and tracer return curves are used to estimate
flow characteristics, such as the recovery ratio, mean residence time,
and swept volume (Seymour and Callaghan, 1997; Brown et al., 1999;
Egert et al., 2020). Additionally, if a mass transport model is used to
analyze the response curves, we can estimate constitutive parameters in
the model, such as the mean fluid velocity and the dispersion coefficient
(Berkowitz et al., 2006; Hawkins et al., 2017; Suzuki et al., 2015).

Even though a conventional solute tracer test provides such useful
information, it is not enough to accurately evaluate the thermal effects
associated with the reinjection nor to predict future production tem-
peratures because those tests do not reveal the likely heat exchange
between the injected water and the reservoir rocks. The rate of heat
exchange is determined by the surface area where the injected water
contacts the rocks (Aksoy and Serpen, 2005; Hawkins et al., 2017,
2020). Reactive tracer tests involving adsorbing tracers are a promising
375-6505/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
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emerging approach for flow-channel surface area estimation (Hawkins
et al., 2018; Reimus et al., 2020). Recently, Hawkins et al. (2018)
and Wu et al. (2021) demonstrated for a mesoscale field injection test
that models calibrated using observations from adsorptive tracer tests
can provide thermal breakthrough predictions that reflect observed
production temperature changes. However, the reliability of this ap-
proach has yet to be demonstrated for elevated temperature conditions
encountered in geothermal fields.

Shook and Suzuki (2017) proposed using thermal breakthrough
responses to estimate surface areas of fluid flow channels between wells
in enhanced geothermal systems. We call this method the ‘‘temperature-
based surface-area estimation method’’. Shook and Suzuki (2017) used
an analytical heat transfer model defined by the rock and fluid prop-
erties, and flow conditions. Apart from the surface area between the
water and rocks, most of the parameters required by the model can
be estimated based on observations of the thermal properties of the
reservoir rock and fluid, and conventional tracer testing. Previously, Co
and Horne (2011, 2012) also used tracer and thermal response curves
to estimate fracture or flow-channel apertures. Ikhwanda et al. (2018)
examined the estimation method proposed by Shook and Suzuki (2017)
with numerical simulations and showed that the method could provide
acceptable errors (within 10%) for the surface area estimates based on
initial temperature decline data (when the temperature had declined
more than 30% of its maximum future decline). Suzuki et al. (2019a)
and Kittilä et al. (2020) applied the temperature-based surface area
estimation method to field data. Their estimated flow-channel surface
areas were consistent with the sizes of the studied fields. However,
comprehensive details about the flow-channel behavior and structures
in those fields were not available and only a rough assessment of
the estimation method was possible by comparing the surface area
estimates with the size of the well field.

Instead of using simulation, Cherubini et al. (2017) and Pastore
et al. (2015) conducted heat and tracer transport experiments with a
lab-scale fractured rock body consisting of limestone. Their fracture
was real, but the fracture’s properties could not be fully controlled and
reproducible structures could therefore not be used. Suzuki et al. (2017)
proposed using 3D-printed fracture models to validate the accuracy of
numerical models. The advantage of using a 3D-printed fracture sample
is that it allows us to conduct flow experiments using a controllable
lab-scale fracture network with a known design and known physical
properties (Suzuki et al., 2017, 2019b). In addition, this approach can
avoid the numerical errors associated with numerical modeling of heat
transfer in complex fracture structures.

In this study, we validated the temperature-based surface-area es-
timation method proposed by Shook and Suzuki (2017) by analyzing
thermal flow experiments conducted using a 3D-printed fracture net-
work. The following section outlines the estimation method that uses a
heat-transfer model to estimate flow-channel properties. The approach
by Shook and Suzuki (2017) involved calibrating a single model that
provides a single point estimate of the surface area. Thus, their ap-
proach did not directly quantify the uncertainty or non-uniqueness of
their estimates. In the present study, we used an additional approximate
Bayesian uncertainty quantification method that takes observation er-
rors and model uncertainty into account. We focused on the ability to
estimate the flow-channel surface area and not on future predictions.
Thus, the thermal breakthrough analysis considered a long observation
period. Because we used 3D-printed fractures with known properties,
the designed geometry of the 3D-printed fractures were used to verify
the accuracy and applicability of the estimation. After validating the
method, we applied the temperature-based surface area estimation
method to field data from a well-studied experimental field.

2. Estimation of flow-channel surface area

The estimation approach we consider here uses observed temper-
ature changes associated with reinjection (Shook and Suzuki, 2017).
2

Unlike Shook and Suzuki (2017), who considered using both tracer
and temperature data, here we only consider temperature data. We use
temperature data to calibrate a heat transfer model, which provides es-
timates of flow-channel properties, such as flow-channel surface areas.
In this section, we introduce the heat transfer models and a method
for quantitative evaluation of model parameter uncertainty used in this
study.

2.1. Heat transfer models

2.1.1. Basic model
Propagation of a thermal front in a single-phase geothermal system

hosted in homogeneous rocks has been studied for several decades. Lauw
erier (1955) developed an analytical solution for heat transfer during
one-dimensional flow with heat loss to confining beds. Later, Gringarten
and Sauty (1975) extended that solution to geothermal problems. Their
model assumes that injected water flows along a confined aquifer
connecting a pair of injection and production wells. The confined
aquifer has a parallel plate geometry and is bounded by impermeable
rock. Water is transported along the confined aquifer by advective
flow, and the exchange of heat between the fluid and surrounding
rock is assumed to be governed by the conductive properties of the
rock. Thermal conduction in the direction of the fluid velocity vector is
neglected. Assuming that the aquifer is a fracture or flow-channel with
a porosity of 1, the governing heat-transport equations of this model
are given by

(𝜌𝐶)𝑤

( 𝜕𝑇𝑓
𝜕𝑡

+ 𝑢
𝜕𝑇𝑓
𝜕𝑥

)

=
𝐾𝑅
𝑏

𝜕𝑇𝑅
𝜕𝑦

|

|

|

|𝑦=𝑏
, |𝑦| < 𝑏

(𝜌𝐶)𝑅
𝜕𝑇𝑅
𝜕𝑡

= 𝐾𝑅
𝜕2𝑇𝑅
𝜕𝑦2

, |𝑦| ≥ 𝑏 .
(1)

Here, 𝑇𝑓 is the water temperature within the flow channel, 𝑇𝑅 is the
temperature in the surrounding rock, 𝑡 is time, 𝑥 is the coordinate along
the flow-channel axis, and 𝑦 is the coordinate perpendicular to the
flow-channel axis. The parameter 𝑏 represents half of the flow-channel
aperture, 𝜌 denotes density, 𝐶 denotes specific heat capacity, and 𝐾𝑅
is the thermal conductivity of the rock. Note that the subscripts 𝑤,
𝑓 , and 𝑅 are used to indicate values associated with the water, flow
channel, and rock, respectively. The mean fluid velocity 𝑢 is assumed
o be constant along the flow channel over time, and the surrounding
ock is assumed to extend infinitely away from the flow channel.

For the boundary and initial conditions, we assume that the flow-
hannel fluid and surrounding rock have a constant initial temperature
0, and when the injection begins at time 𝑡 = 0, the injection temper-
ture 𝑇𝐼 changes instantaneously (in a step-wise fashion) at the flow-
hannel inlet from the initial temperature 𝑇0 to a constant injection
emperature 𝑇𝐼 . The resulting analytical solution for the temperature at
he flow-channel outlet can be written as (Gringarten and Sauty, 1975)

(𝑡) = 𝑇0 − (𝑇0 − 𝑇𝐼 )erfc

(

𝜂𝐴
2𝑞

(

𝑡 − 𝑉
𝑞

)−1∕2
)

𝐻
(

𝑡 − 𝑉
𝑞

)

. (2)

Here, 𝐻(⋅) is the Heaviside step function, and 𝐴 is the flow-channel
surface area through which the fluid in the channel exchanges heat with
the surrounding rock. For the narrow rectangular channel assumption
that is inherent in (1), the surface area includes the two major sides of
the channel and is given by 𝐴 = 𝑉 ∕𝑏, where 𝑉 is the pore volume
of the flow-channel. The flow rate along the flow-channel is given
by 𝑞 = 𝑉 𝑢∕𝐿, where 𝐿 is the length of the flow channel, and 𝜂 =
𝐾𝑅(𝜌𝐶)𝑅∕(𝜌𝐶)𝑤 is a thermal parameter that depends on the thermal

roperties of the fluid and rock.
Assuming that the produced fluid is a combination of reinjected

luid flowing along a single flow-channel and fluid produced at the
nitial temperature 𝑇0, the production temperature 𝑇p is given by

p(𝑡) = 𝑇0 −
𝑞inj

𝐹
(

𝑇0 − 𝑇 (𝑡)
)

, (3)

𝑞prod
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Fig. 1. The 3D-printed fracture sample. (a) Design, (b) blueprint, and (c) photo of the fracture model.
where 𝑞inj is the injection rate and 𝑞prod is the production rate. The
ratio of injected fluid that flows through the flow channel is given by
𝐹 (that is, 𝑞 = 𝐹𝑞inj). In this study, we consider the above model as
the basic model for heat transfer along a flow channel. This model
includes eight parameters 𝒑 = [𝐴, 𝑉 , 𝜂, 𝑇0, 𝑇𝐼 , 𝐹 , 𝑞inj, 𝑞prod]. Fig. A.8
in Appendix illustrates the effect that the area and volume parameters
have on the basic model.

2.1.2. Extension to multiple flow-channels
Several researchers have used an extension of the basic model

(1) in order to describe more diverse flow patterns (e.g., Axelsson
et al. (2001), Shook and Suzuki (2017), Suzuki (2017), Suzuki et al.
(2019a)). The basic model can be generalized to describe the influence
of 𝑛 flow-channels connecting an injection well and a production well.
The generalization commonly used assumes that interactions between
different flow-channels can be neglected, and the initial and boundary
conditions for each flow-channel are assumed to be the same as the ones
used for the basic model. However, it should be noted that ignoring
thermal interactions between channels can result in optimistic thermal
breakthrough predictions for cases with tightly spaced channels. If we
use the subscript 𝑖 to indicate variables associated with the 𝑖th flow-
channel connecting the injection well with the production well, then
3

the temperature of the fluid entering the production well through the
𝑖th flow channel is described by

𝑇𝑖(𝑡) = 𝑇0 − (𝑇0 − 𝑇𝐼 )erfc

(

𝜂𝐴𝑖
2𝑞𝑖

(

𝑡 −
𝑉𝑖
𝑞𝑖

)−1∕2
)

𝐻
(

𝑡 −
𝑉𝑖
𝑞𝑖

)

. (4)

Accordingly, the production temperature 𝑇p is given by

𝑇p(𝑡) = 𝑇0 −
𝑞inj

𝑞prod

𝑛
∑

𝑖=1
𝐹𝑖

(

𝑇0 − 𝑇𝑖(𝑡)
)

, (5)

The ratio of injected fluid that flows through the 𝑖th flow-channel is
given by 𝐹𝑖 (that is, 𝑞𝑖 = 𝐹𝑖𝑞inj). When estimating the parameters of
more than one flow channel, 𝐴𝑖, 𝑉𝑖, and 𝐹𝑖 can differ between the
paths, while we assume that 𝑇0, 𝑇𝐼 , and 𝜂 are the same for all paths
for simplicity. This solution consists of 3𝑛 + 5 parameters for 𝑛 flow
channels: 3 parameters for each path (𝐴𝑖, 𝑉𝑖, 𝐹𝑖) and 5 parameters for
the entire system (𝑇0, 𝑇𝐼 , 𝜂, 𝑞inj, 𝑞prod). We refer to this solution (5) as
the multiple flow-channel model.

Although other finite volume and finite element models can be used
to analyze thermal response data (e.g., Hawkins et al., 2017, 2018), the
above two models are considerably simpler to use and computationally
cheaper, and are therefore commonly used in practice (Aksoy et al.,
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2008; Axelsson et al., 2001). Furthermore, a more computationally
demanding model does not necessarily result in more reliable results.
As Hawkins et al. (2018, 2017) demonstrated using a finite element
model, a more computationally demanding model that has an ideal-
dipole flow pattern within a 2D fracture of uniform aperture will
generally not be flexible enough to match thermal response data nor
to reliably predict plausible production temperatures. Later, Hawkins
et al. (2020) showed that a finite element model with a nonuniform
aperture distribution calibrated based on tracer and pressure data
achieved better temperature predictions. Yet, as discussed in Appendix,
the basic model provides more variable model outputs than the ideal-
dipole model discussed in Hawkins et al. (2018, 2017). Considering
this and the additional flexibility afforded by the multiple flow-channel
model (5), we consider using the simple analytical models outlined
above for estimating uncertainties associated with injection-induced
thermal breakthrough.

2.2. Uncertainty quantification

If we can get observations of temperature drawdown caused by
water injection, we can compare it with solution (3) or (5) to estimate
the surface area of rock that imparts heat to the injected water (Shook
and Suzuki, 2017). Shook and Suzuki (2017) considered estimating
the surface area by history-matching a single temperature model but
did not quantify the uncertainty of the surface area estimation. In
this study, we evaluate the uncertainty by considering not only the
surface area to be estimated, but also the probability distributions of
the other parameters that define the models. In this study, we applied
an approximate Bayesian sampling approach called the randomized
maximum likelihood (RML) method (Oliver et al., 1996; Oliver, 2017)
to estimate model parameter uncertainty.

The RML approach starts by randomly sampling 𝑁 models (un-
onditional realizations of model variables) from a prior distribution,
hich describes what model parameter values 𝒑 are plausible. Then,

he ensemble of 𝑁 prior models is pushed towards the posterior distri-
ution by solving a nonlinear optimization problem for each candidate
odel contained in the ensemble. Each optimization problem is a

andomized history-matching problem where the observations are cor-
upted with randomly sampled observation noise. The result is an
nsemble of 𝑁 models, which provide an approximate Bayesian pa-
ameter posterior distribution that can be used to describe the model
arameter uncertainty given the observations.

The 𝑗th RML posterior parameter sample 𝒑𝑗 is generated by solving
he following nonlinear optimization problem:

𝑗 = argmin
𝒑

{

[

𝒅(𝒑) − 𝒅obs,𝑗
]𝑇 𝛤−1

d
[

𝒅(𝒑) − 𝒅obs,𝑗
]

+
[

𝒑 − 𝒑uc,𝑗
]𝑇 𝛤−1

p
[

𝒑 − 𝒑uc,𝑗
]

}

. (6)

he corresponding prior sample is denoted by 𝒑uc,𝑗 ∼  (𝒑pr, 𝛤p), which
s randomly sampled from a multivariate Gaussian prior distribution
efined by a prior parameter mean 𝒑pr and covariance matrix 𝛤p.
he stochastic observations are similarly 𝒅obs,𝑗 ∼  (𝒅obs, 𝛤d). For the
roblem considered in this study, 𝒅obs is a vector of the temperature

observations at the production well and 𝛤d is the covariance matrix of
the observation noise, which is assumed to be Gaussian. The simulated
temperature observations are denoted by 𝒅(𝒑). To solve each optimiza-
tion problem, we used a Trust Region Reflective optimization algorithm
that is available in Python’s SciPy optimization library.

3. Flow experiments using a 3D fracture model

3.1. Fracture model design and manufacturing

To validate the temperature-based surface area estimation method,
we analyzed data from thermal flow experiments carried out using a
4

3D-printed fracture sample. The fracture sample was designed using the F
freely available OpenSCAD software (OpenSCAD, 2021). A schematic
diagram of the fracture model is shown in Fig. 1. The 3D-printed
sample consisted of three sections: two end sections and a main section
containing the fractures. The end sections were used for connecting
tubes to the inlet and the outlet of the fracture; they also provided
additional measurement ports, which could be used for measuring
inlet and outlet temperatures. The fracture section consisted of nine
intersecting disc-shaped fractures with 50 mm diameters and 0.1 mm
apertures. The fractures are depicted in white in Fig. 1a. The fractures
overlapped to form a flow-channel from one end of the model to
the other end. Although we considered simpler single-fracture models,
the zigzagging structure shown in Fig. 1 was chosen considering the
model size constraints set by the 3D printer and the need to ensure
enough flow-channel surface area to obtain effective temperature data.
Based on the 3D-printed design, the effective fracture surface area is
expected to be between 0.030–0.035 m2. The combined surface area
of the nine fractures that form the flow-channel was designed to be
0.035 m2. However, due to the way that the fractures overlap, the
effective conductive surface area may be lower (Fig. 1). Discounting
the surface areas of the fracture ends that protrude from the fracture
intersections gives the lower limit of 0.030 m2 for the effective surface
area.

In this study, we used an ultraviolet curing type 3D printer (Agilista
3100, KEYENCE co.) to generate a 3D-printed sample consisting of
acrylic ultraviolet-curing resin. The flow-channel or cavity space was
sculpted by the printer with a support material. After 3D printing
the sample object, the water-soluble support material was removed to
create a clean fracture structure by washing the 3D-printed sample in
an ultrasonic bath for several days. A photograph of the 3D-printed
fracture sample is shown in Fig. 1c.

3.2. Experimental setup

We used the fracture sample in thermal flow experiments and
measured the resulting thermal responses. A diagram and a photo of the
experimental setup are shown in Fig. 2. We prepared an inlet beaker
at room temperature (around 23 ◦C) and a heat bath with a heater set
to 40 ◦C. The fracture model was placed in the heat bath as shown in
Fig. 2.

To prepare the experiments, the fracture sample was connected with
tubes to a pump, an inlet beaker full of water and an outlet beaker
as shown in Fig. 2. Before running the flow experiments, the fracture
model and flow tubes were saturated with water. This was achieved by
pumping water from the inlet beaker through the sample and into the
outlet beaker. Subsequently, the pump was turned off and the saturated
fracture sample was placed in the heat bath for several hours so that
the temperature within the fracture model would equilibrate with that
of the heat bath to attain a steady initial temperature 𝑇0.

The analytical heat-transfer models explained in Section 2.1 assume
hat the inlet temperature changes instantaneously to a constant injec-
ion temperature when injection commences. However, for the practical
onditions of the experiment, the temperature curve measured at the
nlet will not be an ideal step function since flow through the tubes
nd pathways leading to the inlet will delay and otherwise alter the
njection-induced thermal front. To reduce such effects, we used a
hree-way stopcock in front of the fracture entrance; that allowed us to
recool most of the tubing used to connect the fracture with the inlet
eaker by circulating injection fluid in front of the fracture entrance
ntil just before injection began. As indicated by the blue arrows in
ig. 2a, the water in the inlet beaker flowed through the pump and
as returned to the inlet beaker at the three-way stopcock until the

njection experiment started. To start the injection started the three-
ay stopcock was twisted, and cold water in the inlet beaker was

njected into the fracture model (as indicated by the red arrows in

ig. 2a). As a result, we were able to induce the temperature at the
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Fig. 2. (a) Schematic of thermal flow experiment involving a 3D-printed fracture sample, and (b) photo of apparatus.
fracture inlet to change relatively abruptly from its initial value to a
near constant injection value as shown in Fig. 3.

We carried out the flow experiment four times with constant flow
rates of 15, 20, 25, and 30 ml/min. Temperature changes were mea-
sured in the inlet beaker, at the fracture inlet, at the fracture outlet,
and in the heat bath using K-type thermocouples as shown in Fig. 2.
We also used a scale to continuously weigh the mass of produced water
that accumulated in the outlet beaker. We used the changes in weighed
mass to evaluate the flow rate during each experiment and to confirm
that the flow rates were steady and consistent with the rates assigned
to the adjustable fluid pump.

3.3. Experimental results

3.3.1. Temperature observations
Observed temperature changes are shown in Fig. 3. Each flow

experiment lasted about 11 or 12 min. Temperatures at four locations
were logged at two second intervals after injection started. In this
study, we used the temperature at the fracture outlet as the production
temperature. The measured temperature at the fracture inlet was used
to determine the injection temperature and to check whether it was
consistent enough with the theoretical assumptions used in the model-
ing. The temperature of the inlet beaker and the heat bath were also
monitored to confirm that they were nearly constant.

Looking at the temperature profiles at the outlet (Fig. 3), a small
temperature drop was observed at early times for all flow rates. The
arrival time of the initial temperature drop did not appear to correlate
systematically with the flow rate so that we considered the initial
temperature drop to be caused by some errors from the experimental
setup. We thought that we had warmed up the water in the fracture
sufficiently before starting the experiment, but perhaps the water in the
fracture was not warmed up enough and caused the initial temperature
drop. In this study, we considered such effects as measurement errors
and used the data as it is. In addition, the temperature in the heat
bath was higher than the set value of 40 ◦C. This may be caused by
an error in the heater. However, since the measurement results were
almost constant, this was not an issue for the analysis.

3.4. Data analysis

3.4.1. Observations and error model
We analyzed observations from the first 600 s of each experiment.

Note that the heat transfer model introduced in Section 2.1 assumes
that the surrounding rocks extend infinitely away from the fluid path-
way, but the 3D-printed sample has a finite size. Over the 10 min
observation period, we expect that the mean distance traveled by a
thermal front diffusing into the 3D-printed sample was about

√

2𝑡𝜅𝑅 =
1 cm, where 𝜅𝑅 = 𝐾𝑅∕(𝜌𝐶)𝑅 is the thermal diffusivity of the 3D-printed
material. That distance was somewhat smaller than half the diameter
of the 6 cm wide main 3D-printed sample containing the fractures.
5

Thus, although the 3D-printed sample had a finite size, we expect that
the duration of the observation period was short enough for it to be
reasonable to apply the modeling assumptions outlined above.

Based on the measurements of steady heat bath, injection beaker,
and inlet temperatures, the temperature measurement error in the lab
was at best about 0.1 ◦C. However, there appeared to be systematic drift
with time for some of the temperature observations shown in Fig. 3,
and we do not expect the simple model we used to match the early
temperature trend measured at the outlet. Thus, a larger observation
error may be appropriate when analyzing the lab data to account for
both modeling and measurement/experimental errors. For simplicity,
we accounted for such errors using a Gaussian error model where the
observation errors were assumed to be independent and identically
distributed random variables with a 0.5 ◦C standard deviation. That
is, we applied a diagonal observation covariance matrix 𝛤d that had
diagonal terms set to (0.5 ◦C)2. This assumed error model can likely be
improved on by taking into account that the early observation errors
looked correlated as can be seen in Fig. 4.

3.4.2. Applied heat transfer model
In this experimental setup, all of the injected water flowed along

a single flow-channel and was produced at the outlet (i.e., 𝑞 = 𝑞inj,
𝐹 = 1). We, therefore, only used the basic model with one flow-channel
to analyze the temperature profiles from the laboratory experiments.
In addition to the six essential parameters in the basic model, we also
included an additional time delay parameter 𝛥𝑡 to account for bias
in the assumed time of injection at the fracture inlet. Such bias is,
for example, a result of the non-negligible volumes in front of the
fracture inlet, that delay the arrival of the thermal front to the inlet
as can be seen in Fig. 3. Thus, we estimated seven model variables
𝒑 = [log10(𝐴), log10(𝑉 ), 𝑞inj, 𝜂, 𝑇0, 𝑇𝐼 , 𝛥𝑡].

3.4.3. Model priors
Table 1 outlines the prior parameter information used for analyzing

the experimental results. As indicated in Table 1, we estimated base-
ten logarithms of the fracture surface area 𝐴 and the volume 𝑉 . We
assumed a prior mean of −2 for log10(𝐴) (equates to a 0.01 m2 area)
with a rather conservative prior standard deviation of 2. This choice
had little impact on the estimates of surface area since they were well
informed by the temperature observations. For the fracture volume 𝑉 ,
we assumed a prior mean of −5 for log10(𝑉 ) with a prior standard
deviation of 1. This suggests a prior belief that 𝑉 is about 10 mL
(10−5 m3).

The prior means for the initial temperature 𝑇𝐼 and the injection
temperature 𝑇0 were chosen based on measured values in each exper-
iment, and thus those prior means varied between experiments. The
values listed in Table 1 are the ones used for analyzing the 20 ml/min
experiment. We used the early temperatures at the outlet to choose
the prior mean for 𝑇0, and we assigned it a prior standard deviation
of 0.2 ◦C. Similarly, we used the temperature at the fracture inlet at
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Fig. 3. Temperature data from thermal breakthrough experiments using a 3D-printed fracture sample. The results shown are for injection rates of (a) 15 ml/min, (b) 20 ml/min,
(c) 25 ml/min, and (d) 30 ml/min.
Table 1
Model priors and posterior distributions for input parameters in the basic model (3) used to analyze the 3D-printed model experiments. Standard
deviations are listed in the columns marked by SD. Physical properties of the Agilista 3100 resin properties were provided by the manufacturer
of the 3D printer (KEYENCE co.). Note that the applied prior means for 𝑇0, 𝑇𝐼 and 𝑞inj were different for each experiment. The example prior
values shown here are those that were used for the 20 ml/min experiment.

(a) Prior parameter information

Estimation parameters Mean SD

log10(𝐴, surface area [m2]) −2 2
log10(𝑉 , volume [m3]) −5 1
𝑇0, initial temperature [◦C] 39.8 0.2
𝑇𝐼 , injection temperature [◦C] 26.1 1
𝑞inj, injection rate [m3/s] 20.0 0.5
𝜂, thermal parameter [s−1∕2 m] 122 ⋅ 10−6 1 ⋅ 10−6

𝛥𝑡, time delay [s] 8 10

Physical properties of water Mean SD

𝜌𝑤, fluid density [kg/m3] 995 3
𝐶𝑤, fluid heat capacity [J/(kg K)] 4180 2.5

Physical properties of the resin Mean SD

𝜌𝑅, matrix density [kg/m3] 1111 11
𝐶𝑅, matrix heat capacity [J/(kg K)] 1386 14
𝐾𝑅, thermal conductivity of matrix [W/(m K)] 0.166 0.002

(b) Posterior estimates

Estimation parameters 15 ml/min 20 ml/min 25 ml/min 30 ml/min

Mean SD Mean SD Mean SD Mean SD

log10(𝐴, surface area [m2]) −1.53 0.03 −1.48 0.02 −1.52 0.02 −1.47 0.02
log10(𝑉 , volume [m3]) −5.9 0.5 −5.6 0.4 −5.1 0.4 −5.6 0.5
𝑇0, initial temperature [◦C] 38.4 0.2 39.4 0.2 38.1 0.1 39.4 0.2
𝑇𝐼 , injection temperature [◦C] 27.5 0.4 27.1 0.3 25.5 0.1 27.8 0.2
𝑞inj, injection rate [m3/s] 15.0 0.5 20.0 0.5 25.0 0.5 30.0 0.5
𝜂, thermal parameter [s−1∕2 m] 122 ⋅ 10−6 1 ⋅ 10−6 122 ⋅ 10−6 1 ⋅ 10−6 122 ⋅ 10−6 1 ⋅ 10−6 122 ⋅ 10−6 1 ⋅ 10−6

𝛥𝑡, time delay [s] 1 9 4 7 8 9 4 7
late times to determine the prior mean for 𝑇𝐼 . Note that, as can be
seen in Fig. 3, the observed injection temperature was not constant.
Furthermore, the inlet temperatures were higher than those in the
beaker, and the initial inlet and outlet temperatures tend to deviate
6

from the heat-bath temperature. From these observations, we do not
necessarily expect that the effective injection temperature was the same
as the late-time inlet temperature. To account for this, we chose a 1 ◦C
prior standard deviation for the effective inlet/injection temperature.
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The prior mean and standard deviation for the injection rate 𝑞inj
were based on the assigned injection pump rates and measured flow
rates by the outlet. The difference between the assigned flow rate and
the average measured value was less than 0.1 ml/min. Yet, we as-
sumed a prior standard deviation of 0.5 ml/min based on conservative
estimates of transient fluctuations in measured flow rates.

The thermal parameter 𝜂 =
√

𝐾𝑅(𝜌𝐶)𝑅∕(𝜌𝐶)𝑤 depends on the
thermal properties of the fluid and rock (in this case the 3D-printed
resin). We approximate the prior variance of 𝜂 by

𝜎2
𝜂 =

(

𝜕𝜂
𝜕𝜌𝑤

)2

𝜎2
𝜌𝑤

+
(

𝜕𝜂
𝜕𝐶𝑤

)2

𝜎2
𝐶𝑤

+
(

𝜕𝜂
𝜕𝐾𝑅

)2

𝜎2
𝐾𝑅

+
(

𝜕𝜂
𝜕𝜌𝑅

)2

𝜎2
𝜌𝑅

+
(

𝜕𝜂
𝜕𝐶𝑅

)2

𝜎2
𝐶𝑅
, (7)

here 𝜎𝑠 denotes the prior standard deviation of variable 𝑠. To reflect
he properties of water at the range of experimental temperatures
etween 20 ◦C and 40 ◦C, we assumed for density of water a prior mean
f 995 kg/m3 and a standard deviation 𝜎𝜌𝑤 of 3 kg/m3, and for the heat
apacity of water we used a prior mean of 4180 J/(kg K) and a standard
eviation 𝜎𝐶𝑤

of 2.5 J/(kg K). The prior mean values for the thermal
onductivity, density, and heat capacity of the 3D-printed material
ere based on values provided by the manufacturer of the 3D printer

KEYENCE co.). The manufacturer did not provide information on the
ossible errors associated with those reported values. We, therefore,
rbitrarily assigned prior standard deviations that equal to 1% of their
espective prior mean values. Those values are listed in Table 1. Based
n the above, the combined parameter 𝜂 has a prior mean of 1.22 ×
0−4 s−1∕2 m and a standard deviation 𝜎𝜂 = 0.01 × 10−4 s−1∕2 m.

The time delay factor 𝛥𝑡 was assigned a prior mean and a standard
eviation of 8 s and 10 s, respectively. The prior mean reflects the
ypical observed onset of temperature decline at the inlet.

.4.4. Estimation results
In our analysis, we aimed to estimate the surface area of the flow

hannel in the 3D-printed fracture sample, but we also needed to simul-
aneously estimate other uncertain parameters. For each of the flow-
ate experiments, the seven estimated parameters 𝒑 = [log10(𝐴), log10
𝑉 ), 𝑞inj, 𝜂, 𝑇0, 𝑇𝐼 , 𝛥𝑡] were randomly sampled from their respective

prior distributions and 1,000 prior parameter combinations (prior sam-
ples) were prepared. Then, we used the RML method to transform those
prior samples into 1,000 posterior parameter samples that provide an
ensemble of different models that match the temperature observations.

The results of history-matching the experimental data are shown in
Fig. 4. Since the results of the RML analysis provide posterior error
bounds for the model and its parameters, the figure shows 95% cred-
ibility intervals (CIs) for the history-matched model. The results show
that the model matches were in good agreement with the experimental
observations except for the initial temperature drops. As discussed
previously, the initial temperature drops might be due to errors in the
experimental setup. The early temperature decline profile was likely
caused by a heterogeneous initial temperature distribution resulting
from heating up the sample for a length of time that was insufficient
for achieving steady and homogeneous initial temperature conditions.
The model is unable to reflect such a case since the model assumes a
constant and homogeneous initial temperature distribution.

Table 1 presents results of the parameter estimation. It presents the
posterior estimates based on estimated means and standard deviations
to summarize some of the results of the RML estimation, although the
posterior parameter distributions were not necessarily Gaussian. The
statistics of the estimated surface areas for each flow rate are shown
in Fig. 5. Based on the 3D-printed design, the effective fracture surface
area should be between 0.030–0.035 m2 as discussed previously. The
estimated posterior mean values for the surface area ranged between
about 0.030 m2 and 0.034 m2 for the four flow experiments. Those
values and the estimated error bounds were consistent with the design
of the 3D-printed fracture sample, as shown in Fig. 5. The four error
7

ars shown in Fig. 5 suggest that the effective surface area controlling
he conductive heat transport may be somewhere in the middle of the
ange indicated by the 3D design or around 0.0325 m2.

In the same way as we estimated the surface area, we also estimated
he other model parameters. The estimates of the mean log-transformed
olume ranged between −5.9 and −5.1 (Table 1). That range was

consistent with the reference volume of the fracture sample that was de-
signed to be about 1.8 ⋅ 10−6 m3 (that is, log10(𝑉 ) = −5.7). Furthermore,
he reference volume and each posterior estimate of the mean log-
ransformed volume agreed within two posterior standard deviations.
ikewise, the posterior 95% credibility intervals of the log-transformed
olume parameter that were estimated for the four experiments all
ontained the reference value of the log-transformed volume.

Estimates of the initial temperature 𝑇0, generally, ended up being
slightly lower than the earliest temperature observations. This can
be seen by comparing the earliest temperature observations in Fig. 4
with the simulated values. This is a result of the models being unable
to reproduce the early temperature drop. Moreover, the estimated
posterior mean values of the injection temperature 𝑇𝐼 were all about
1 ◦C or 1.5 ◦C above their respective observed late-time steady inlet
temperature. Nevertheless, this is consistent with the observed trend
that the minimum breakthrough temperature tended to increase away
from the inlet beaker, as can be seen by comparing the temperature
observations for the inlet beaker and the fracture inlet (Fig. 3).

The posterior distributions of the thermal parameter 𝜂 and the flow-
rate 𝑞inj did not differ from their prior distributions. This is because
those parameters were well constrained a priori, while other param-
eters (most notably, the surface area) were less constrained a priori
and the estimation process predominantly involved updating the more
uncertain variables. The posterior mean for the time delay factor 𝛥𝑡
tended to be somewhat lower than its prior mean that was chosen
based on the inlet temperature data. This is a result of the automated
calibration procedure having to reject large, positive time delay factors
to match the early temperature drop.

These results demonstrated that we can reliably estimate the sur-
face area of a fractured flow channel in a controlled thermal flow
experiment. Furthermore, by applying a Bayesian approach, we could
quantify the estimation uncertainty for various model parameters, in-
cluding those describing physical characteristics, such as flow-channel
surface area and volume.

4. Field application

In the previous section, we showed that we could reasonably es-
timate the surface area of a 3D-printed flow channel in a controlled
laboratory setting. In this section, we demonstrate how the same ap-
proach can be used for actual fields. In most fields, exact flow behavior
and flow-channel structures in the underground are unknown, unlike
the laboratory experiments. To demonstrate the methodology consid-
ered in this study, we used the results of thermal flow tests conducted
at the Altona Flat Rocks experimental field, which has been studied ex-
tensively over recent years (Hawkins et al., 2018; Tsoflias and Becker,
2008; Tsoflias et al., 2015; Castagna et al., 2011), and compared our
results with results from previous studies.

4.1. Outline of field test

The Altona Flat Rocks field is located about 6 km northwest of West
Chazy in northern New York State, USA (Hawkins et al., 2017). Several
flow studies and tracer tests have been conducted at this experimental
field since wells were initially drilled there in 2004. Fig. 6a (Hawkins
et al., 2020) presents a schematic image of the Altona Flat Rocks
experimental field. It is known that there is a subhorizontal bedding
plane fracture that controls the flow at the site. The wells form a

five-spot well pattern and they penetrate the conductive subhorizontal
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Fig. 4. Model matches to temperature data for the 3D-printed fracture experiments at flow rates of (a) 15 ml/min, (b) 20 ml/min, (c) 25 ml/min, and (d) 30 ml/min.
Fig. 5. Estimated fracture surface area for different flow rates. The uncertainty in the
surface area estimates is illustrated using boxplots, where the upper and lower ends of
each boxplot indicate the 95% credibility interval, the red line shows the median, and
the black rectangle indicates the first and third quartiles. The blue region highlights
the expected range for the effective surface area based on the design of the 3D-printed
fracture sample. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

fracture 7.6 m below the surface. Well 204 was used to inject water,
and 14.1 m away well 304 was used to produce water from the fracture.

Fig. 6b shows, for another Altona flow experiment, a Ground Pen-
etrating Radar (GPR) survey map of the change in observed amplitude
reflections, for the depth of the fracture plane, caused by injection of a
saline fluid into the fracture (Hawkins et al., 2018). Note that saline
fluid was circulated from wells 304 to 204, which is reverse to the
flow direction in the thermal test. The amplitude is a function of the
fracture aperture and the salinity of the fluid in the fracture (Tsoflias
and Becker, 2008). The change in GPR signal induced by the saline
fluid was mainly confined to a narrow region between wells 204 and
8

304 (Fig. 6b). Therefore, the observed amplitude change indicates that
there may be a narrow (1 m to 2 m wide), permeable flow-channel
between wells 204 and 304. Fig. 6c shows an example fracture aperture
distribution that Hawkins et al. (2020) estimated based on tracer data
and observed frictional pressure losses. Their results also suggest that
there is a narrow preferential flow-channel between the injection and
production wells.

The thermal flow experiment was carried out at injection and
production rates of 5.7 L/min with a total volume circulated of 49,250
L (Hawkins et al., 2017). Since the field has a low underground temper-
ature (11.7 ◦C) at shallow depths, the experiment involved injecting hot
water (74 ◦C) through the injection well 204 and into the subhorizontal
fracture (Fig. 6). Fluid circulation was carried out prior to hot water
injection between well 204 and well 304 to achieve steady flow condi-
tions. After production, produced water was circulated through a water
heater to warm it up to 74◦C prior to it being reinjected. The thermal
flow experiment lasted 6 days. During the experiment, the production
temperature was logged at two minute intervals.

4.2. Data analysis

4.2.1. Observations and error model
We used observations from the first 140 h of the heat exchange

experiment, trimmed the observations and only examined temperature
observations taken every 30 min. As was the case for the laboratory
experiment, we expected that the duration of the experiment was
short enough to be consistent with the infinite medium assumptions
used in the heat-transfer models. Based on the rock properties re-
ported by Hawkins et al. (2017), a thermal front diffusing into the
rock surrounding the fracture can be estimated to travel about 2 m
(
√

2𝑡𝐾𝑅∕(𝜌𝐶)𝑅) over the duration of the experiment. This was roughly
5.5 m smaller than the depth of the subhorizontal fracture. Thus, the
limited depth of the rock above the subhorizontal fracture was not
expected to result in an apparent discrepancy with the models over the
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Fig. 6. Overview of the Altona experimental field. (a) Schematic image of the field showing fiber-optic distributed temperature sensing (FO-DTS) measurement locations (Hawkins
et al., 2020). The temperature changes at the end of the 6 h injection test are categorized as being high (20 ◦C or above), medium (around 10 ◦C), or low (0–5 ◦C) (Hawkins
et al., 2017). The colored contour map shows example simulated temperatures after a day (from Hawkins et al., 2020), where dark blue indicates the initial temperature and
dark red indicates the injection temperature. (b) Spatial distribution of amplitude reflections from GPR (Ground Penetrating Radar) survey results after subtracting the background
signal (from Hawkins et al., 2018). (c) Estimated fracture aperture distribution based on tracer data (from Hawkins et al., 2020). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
observation period. Fiber-optic distributed temperature sensing (FO-
DTS) measurements reported in Hawkins et al. (2017) confirm that this
assumption is reasonable.

Based on the observed fluctuations in the temperature data, it
appears to be reasonable to assign a 0.1 ◦C standard deviation to the
observation error. Yet, we chose a more conservative 0.5 ◦C standard
deviation and assumed the same Gaussian observation error model as
we used when analyzing the laboratory experiments.

4.2.2. Applied heat transfer models
Although the 3D-printed sample discussed in the previous section

was certain to have only a single flow channel, complex structures
in fields may lead to multiple flow channels. Hawkins et al. (2018)
observed that the flow behavior at the Altona site was channelized
and they were able to account for observed tracer returns using a
model with two flow channels. Therefore, we considered modeling heat
transfer at the Altona site not only using the basic model (Section 2.1)
but also the multiple flow-channel model including two flow channels
(Section 2.2).

Unlike the simple modeling used for the laboratory setting, in the
field only a fraction of injected fluid may be retrieved at the production
well. As a result, we needed to estimate an additional recovery factor
(𝐹𝑖) for each of the modeled flow channels connecting the injection and
production wells.
9

In the previous section, we considered a time delay parameter
𝛥𝑡 when analyzing the experimental data because the volume of the
injection pipelines in front of the fracture model were not negligible
and it could be valuable to introduce a bias-correcting time delay
factor to improve the data analysis. In contrast, for the Altona field
experiment, the interwell volumes may be large enough relative to
the injection volumes connecting the heater with the fracture that we
can omit using such a bias-correcting time delay factor. Therefore, in
order to reduce the time spent on optimization, the parameter 𝛥𝑡 was
neglected in the Altona analysis. In addition, it should be noted, that
the time delay factor affects the volume estimation but not the surface
area estimation, which is the main focus of this study.

4.2.3. Model priors
Table 2 outlines the prior parameter assumptions used for the heat

transfer models. Like the analysis for the laboratory experiments, we
estimated base-ten logarithms of the flow-channel surface area 𝐴 and
the volume 𝑉 . Note that the multiple flow-channel model includes two
surface areas, volumes, and recovery ratios for the two flow channels,
which are denoted by subscripts 1 and 2 (i.e., 𝐴1, 𝐴2, 𝑉1, 𝑉2, 𝐹1, 𝐹2).
The well field covers an area of about 100 m2, and based on that we
assumed a prior mean of 2 for log10(𝐴) and a standard deviation of
2. Hawkins et al. (2018) estimated that the total flow-channel volume
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Table 2
Altona parameter estimation results for different models. SD indicates the parameter standard deviation, and 95% credibility intervals (CIs) are
provided for the posterior estimates.

(a) Basic model

Estimation parameters Prior Posterior estimates

Mean SD Mean SD 95% CI

log10(𝐴, surface area [m2]) 2 2 1.13 0.06 [1.02, 1.25]
log10(𝑉 , volume [m3]) −1 2 −3.2 0.7 [−5.0,−2.6]
𝑇0, initial temperature [◦C] 11.74 0.10 12.15 0.09 [11.96, 12.32]
𝑇𝐼 , injection temperature [◦C] 74 5 73 5 [63, 82]
𝑞inj, injection rate [m3/s] 9.5 ⋅ 10−5 0.1 ⋅ 10−5 9.5 ⋅ 10−5 0.1 ⋅ 10−5 [9.3 ⋅ 10−5, 9.7 ⋅ 10−5]
𝜂, thermal parameter [s−1∕2 m] 1.0 ⋅ 10−3 0.1 ⋅ 10−3 1.0 ⋅ 10−3 0.1 ⋅ 10−3 [0.8 ⋅ 10−3, 1.2 ⋅ 10−3]
𝐹 , recovery ratio 0.6 0.2 0.38 0.03 [0.33, 0.46]

(b) Multiple flow-channel model with 2 paths

Estimation parameters Prior Posterior estimates

Mean SD Mean SD 95% CI

log10(𝐴1, surface area [m2]) 2 2 0.76 0.14 [0.53, 1.17]
log10(𝑉1, volume [m3]) −1 2 −2.5 0.9 [−4.9,−1.3]
𝑇0, initial temperature [◦C] 11.74 0.10 11.76 0.10 [11.57, 11.95]
𝑇𝐼 , injection temperature [◦C] 74 5 72 5 [63, 83]
𝑞inj, injection rate [m3/s] 9.5 ⋅ 10−5 0.1 ⋅ 10−5 9.5 ⋅ 10−5 0.1 ⋅ 10−5 [9.3 ⋅ 10−5, 9.7 ⋅ 10−5]
𝜂, thermal parameter [s−1∕2 m] 1.0 ⋅ 10−3 0.1 ⋅ 10−3 1.0 ⋅ 10−3 0.1 ⋅ 10−3 [0.8 ⋅ 10−3, 1.2 ⋅ 10−3]
𝐹1, recovery ratio 0.4 0.1 0.24 0.03 [0.18, 0.31]
log10(𝐴2, surface area [m2]) 2 2 1.10 0.15 [0.59, 1.28]
log10(𝑉2, volume [m3]) −1 2 −1.6 1.2 [−4.9,−0.2]
𝐹2, recovery ratio 0.2 0.1 0.20 0.03 [0.15, 0.26]
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connecting the wells (that is, the sum of the first and second flow-
channel volumes) was about 0.28 m3 using inert tracer test results. We
ssumed a prior mean of −1 for log10(𝑉 ) with a prior standard deviation
f 2. For the multiple flow-channel model, the same prior means and
tandard deviations were used for the log-transformed area and volume
arameters of the first and second flow channels.

A suitable prior mean for the initial temperature 𝑇0 appears to be
bout 11.74± 0.02 ◦C based on (Hawkins et al., 2017). However, based
n the observation noise, we applied a prior standard deviation of
.1 ◦C. The injection temperature 𝑇𝐼 was 74 ± 2 ◦C (Hawkins et al.,
017), but since the effective injection temperature at the injection
one might be lower than the injection temperature at the surface, we
sed a larger prior standard deviation of 5 ◦C for 𝑇𝐼 .

The prior mean for the recovery ratio 𝐹 was set to 0.6 for the basic
odel, and the prior standard deviation for the recovery ratio was set

o 0.2 to reflect a wide range of a priori plausible values. On the other
and, the multiple flow-channel model used prior means of 𝐹1 = 0.4 and
2 = 0.2 for the recovery ratios of the first and second flow channels,
espectively. The corresponding prior standard deviations for those
ecovery ratios were each set to 0.1. The prior mean for the injection
ate 𝑞inj was chosen based on the flow rate reported by Hawkins et al.
2017, 2018). They did not report any variability in their flow-rate
easurements and we arbitrarily assigned a 0.1 m3/s prior standard
eviation for the injection rate. However, this value may understate
he error associated with the rate measurements.

Although the physical properties of the flowing water varied with
ocation and time during the test, the models assumed for simplicity
hat the density and heat capacity of the water was constant. Assuming
representative fluid temperature of around 30 ◦C, we chose a prior
ean of 995 kg/m3 for the density of water. Its prior standard deviation
as chosen as 10 kg/m3 to roughly reflect the density variability of
ater at temperatures between 10 ◦C and 70 ◦C. For the heat capacity
f the water, we chose a prior mean of 4190 J/(kg K) and a standard de-
iation of 10 J/(kg K) to reflect its variability at temperatures between
0 ◦C and 70 ◦C.

Similarly, we represented the uncertainty in the thermal proper-
ies of the Altona rock formations, which mainly consist of sand-
tone. Hawkins et al. (2017) reported that a sample of the Potsdam
andstone at Altona had a thermal conductivity of 7.6 W/(m K).
10

rom Robertson (1988), we can expect conductivities of about 5.0 W/(m K) t
o 7.5 W/(m K) for sandstone. Therefore, it might be reasonable to
se a prior standard deviation of around 1.0 W/(m K). For the mean
ock density, we used the 2500 kg/m3 sandstone density reported
y Hawkins et al. (2017), and we assigned it a prior standard deviation
f 200 kg/m3. Hawkins et al. (2017) used a rock specific heat of
30 J/(kg K) based on values reported in Goranson (1942), Robertson
1988). We used the same value for the prior mean and applied a
tandard deviation of 100 J/(kg K) for the rock specific heat. The
mployed prior standard deviations for the rock density and specific
eat were consistent with values reported for sandstone in the literature
see, e.g., Goranson, 1942; Jacobsen et al., 2003; Geng et al., 2018).
ased on the above and Eq. (7), the thermal parameter 𝜂 was assigned
prior mean of 1.0 × 10−3 s−1∕2 m and a prior standard deviation of
.1 × 10−3 s−1∕2 m.

.2.4. Surface area estimation
As presented previously for the laboratory experiments, we used the

ML method to estimate the uncertainty in the constitutive parameters
n each heat transfer model. Figs. 7a, c show the temperature matches
sing the basic model and the multiple flow-channel model. The re-
ulting estimates of the parameter posterior distributions are listed in
able 2. The multiple flow-channel model provided a good match to
he temperature data, while the basic model did not match the data
s well. That result was reflected by a biased posterior mean for the
nitial temperature 𝑇0, which was almost half a degree higher than the
bserved value (see Table 2).

As before, the estimates for the injection rate 𝑞inj and the thermal
arameter 𝜂 did not change from their prior assumptions. However,
lausible values for the recovery ratio(s) were narrowed down by the
stimation process. The estimates suggested that the observed temper-
ture change might be caused by about 40%–50% of the injected fluid
lowing to the production well. This is in agreement with Hawkins et al.
2018). The basic model tended to result in a lower total recovery ratio.

Fig. 7b represents the estimated size of the flow channel in the
asic model using an ellipse and compares it with the size of the
00 m2 well field. The channel is assumed to be horizontal and the
llipse is drawn in such a way that it passes through the injection and
roduction wells. The major axis of the ellipse is aligned with those
ells. As defined, the surface area of a horizontal flow-channel includes
he top and bottom sides of the channel. However, to visualize the
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Fig. 7. Surface area estimation results for the Altona experimental field. Results of history-matching the production-well temperatures using (a, b) the basic model and (c, d) the
multiple flow-channel model with two paths. The left column compares the temperature observations with the 95% credibility intervals (CIs) of the history-matched models and
the right column shows the corresponding estimates of the flow-channel sizes (by depicting half the surface area of each flow channel).
channel size in the horizontal plane, Fig. 7 shows half of the estimated
flow-channel surface area. The posterior mean of half the flow-channel
surface area is depicted by the blue area, and the 95% credibility
interval is represented by the edges of the gray region in Fig. 7b. The
basic model estimation indicates that the total flow-channel surface
area was about 10.5–17.8 m2. This result indicates that the water
mainly flowed along a narrow path, which was consistent with previous
studies on the Altona field (Hawkins et al., 2017, 2018).

The estimated surface areas using the multiple flow-channel model
were about 3.4–14.8 m2 for path 1 and 3.9–19.1 m2 for path 2. The
estimates of the corresponding horizontal cross-sectional areas of those
paths are presented in Fig. 7d. The total flow-channel surface area
(sum of the flow-channel area of paths 1 and 2) has an estimated 95%
credibility interval of 14.3–26.4 m2, while its posterior mean is about
19.3 m2. The lower end of this credibility interval overlapped with the
upper range of plausible values indicated by the basic model. The two
models were thus in reasonable agreement although the multiple flow-
channel model indicated a somewhat larger total surface area than the
basic model.

4.3. Comparison with previous studies

Based on the elliptical flow-channel depictions in Fig. 7, the flow-
channel widths can be estimated to be about 0.6 m for the basic model
and 0.9 m for the multiple flow-channel model (for the combination
of the two paths). Note that these widths were based on the minor
axes of the ellipses shown in Fig. 7b, d. In comparison, Hawkins
et al. (2017) presented additional temperature observations from ten
passive monitoring wells that indicate that the main flow channel width
was less than 4 m (Hawkins et al., 2018). Furthermore, GPR surveys
carried out in the field to detect the flow distribution of saline injection
11
fluid (Tsoflias et al., 2015; Hawkins et al., 2017, 2018) provided
further constraints on the flow geometry (Fig. 6b) and suggested that
the dominant flow channel was roughly 1—2 m wide. Our estimated
flow-channel dimensions were consistent with those measurements.

Previously, Hawkins et al. (2018) used results of inert and adsorp-
tive chemical tracers to estimate flow-channel parameters at the Altona
site. In their modeling, they assumed two separate flow channels to
match the tracer return profiles. Hawkins et al. (2018) estimated that
the combined surface area was about 110 m2 (28 m2 for path 1 and
80 m2 for path 2). The estimated total surface area in our two models
were in both cases smaller than the total area estimated by Hawkins
et al. (2018). The total surface area estimated by the basic and multiple
flow-channel models were similar to the 28 m2 path 1 area estimated
by Hawkins et al. (2018).

It should be noted that, in the above uncertainty analysis, we
neglected to consider the conceptual uncertainty of how and where the
injected fluid that flows to the producer was mixed with other produced
fluid that did not originate from the injection. In our modeling, we
assumed that the produced fluids were all mixed in the production
well and that only injected fluid flowed along each path connecting
the injection–production well pair. Hawkins et al. (2018), however,
assumed in their modeling that the injected fluid was mixed with
additional groundwater near or in the injection well and subsequently
the mixed fluid flowed along the paths connected to the production
well. The reality is likely some combination of those two extremes and
additional mixing of fluids in between the wells. Taking such additional
conceptual uncertainty into account will widen the bounds for the
surface area estimates—namely, it will increase the upper bound for
the surface area. If we reconsider Eqs. (1)–(5) and assume that all the
produced fluid flows along a single path, then we can expect the surface
area estimate to be 1∕𝐹 times higher than our previous estimates
1
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for the basic model. Therefore, the upper bound for the surface area
estimated by the basic model, which gave a recovery ratio of about
𝐹1 = 0.4, could be increased by a factor of 2.5. That is consistent with

hat we found when adjusting and rerunning the estimation with the
asic model with the modified assumption that all the produced fluid
as mixed in the injection well and then flowed along one path to the
roducer. For that case, the resulting 95% credibility interval was 28.9–
4.3 m2 for the surface area. That range is more compatible with the
esults of Hawkins et al. (2018) and the area they reported for path
. This highlights the importance of accounting for conceptual model
ncertainty when estimating flow-channel variables. For the problem
t hand of estimating the flow-channel surface areas, the conceptual
odel uncertainty discussed above becomes relatively more significant

n cases where the injection contributes to a small proportion of the
roduced fluid.

We can also compare other parameter estimates with values re-
orted in previous Altona studies, such as flow-channel volumes. Us-
ng the results from the inert and adsorptive tracers, Hawkins et al.
2018) estimated that the total flow-channel volume was about 0.28 m3

0.08 m3 for path 1 and 0.20 m3 for path 2). Our estimated 95% credi-
ility intervals suggest a total volume of about 1.0× 10−5–2.5× 10−3 m3

or the basic model and 1.2×10−3–0.59 m3 for the multiple flow-channel
odel. Although the estimate by the basic model was smaller than the

stimate from Hawkins et al. (2018) (even if we assumed that all the
roduced fluid flowed along a single path connecting the wells and
hus increased the volume estimate for the basic model by around a
actor of 2.5), the range of the total volume estimates for the multiple
low-channel model agrees with their estimates.

. Concluding remarks

This study considered a flow-channel surface area estimation method
hat uses temperature data associated with reinjection. We validated
he temperature-based surface area estimation method through thermal
low experiments using a 3D-printed flow-channel model. Because
he 3D printer generated flow-channel structures with known geo-
etric properties, we could evaluate the accuracy of the estimation

esults quantitatively. The observed temperature response curves from
he flow experiments were analyzed using simple and fundamental
eat transfer models, and the uncertainty was evaluated using an
pproximate Bayesian sampling approach called the randomized max-
mum likelihood (RML) method. The results showed that the posterior
redibility intervals for the flow-channel surface area estimates were
n agreement with the designed flow-channel surface area of the
D-printed sample.

We also applied the same method to field data from the Altona
xperimental field. The flow-channel surface area estimation suggested
hat there was a narrow and preferential flow channel between the
njection and production wells at Altona. The estimates indicate that
he flow can be attributed to an approximately 1 m wide flow region.
his agrees with previous geophysical and simulation studies that
uggested that the injected fluid mainly flows along a 1–4 m wide
hannel (Hawkins et al., 2017, 2018). The estimated total surface
rea was 10.5–17.8 m2 for the basic model and 14.3–26.4 m2 for
he multiple flow-channel model. The upper limit of those uncertainty
ounds can be increased by about a factor of two by considering the
onceptual uncertainty of where the injected fluid mixes with other
roduced fluid (e.g., in the production well or near the injection well).
hose bounds are consistent with the 28 m2 primary flow-channel
urface area estimated by Hawkins et al. (2018) based on an adsorptive
hemical tracers test. However, the above bounds do not cover their 80
2 surface area estimate for the secondary flow-channel.

Predictions of temperature changes caused by reinjection have typi-
ally been based on using one calibrated model. This inevitably results
n predictions which are unlikely to adequately reflect the future pro-
12

uction response. However, uncertainty quantification methods, such f
s the one used in this study, are increasingly being used with the aim
f improving the reliability of model predictions describing the effects
f reinjection in enhanced geothermal systems (Vogt et al., 2012; Wu
t al., 2021). Evaluating model uncertainty is easily manageable for the
omputationally cheap models considered in this study and should be
referred over relying on one calibrated model.

This study used relatively long temperature observation histories to
alidate the temperature-based surface area estimation method with
ncertainty quantification. In practice, the goal would commonly be
o provide instructive model predictions before substantial temperature
hanges occur. Moreover, reinjection is often carried out cautiously
ecause of the fear of cooling and is commonly halted when tem-
erature decline is observed. As a result, practical thermal response
redictions need to be made based on relatively short observation his-
ories unlike those considered in this study. According to our previous
ork (Ikhwanda et al., 2018), a single calibrated model could provide
cceptable model estimates of flow-channel surface areas (errors within
0%) when the observed temperature had declined more than 30% of
ts maximum future decline. On the other hand, by quantifying the
odel predictive uncertainty, it is possible to evaluate earlier and with

ess data whether enough information is available to guide operations.
hus, our approach may well be applicable to shorter observation
istories, which will be examined in our future research.

The temperature prediction approach considered by Ikhwanda et al.
2018) and Shook and Suzuki (2017) used temperature and non-
eactive tracer test observations. Although this study did not consider
ata from chemical tracer tests, we expect that supplementing tem-
erature observations with additional tracer data is important since
racer observations help to constrain how much injection fluid returns
o production wells. As a different approach, chemical tracer testing
ethods based on reactive tracers, which are sensitive to flow-channel

urface areas, and frictional pressure loss observations have shown
ignificant promise as a means for early thermal breakthrough predic-
ion (Hawkins et al., 2020; Wu et al., 2021). At later stages, such tracer
bservations can also be combined with early thermal breakthrough
bservations to refine model predictions.
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ppendix. Effects of the main parameters in the basic heat-transfer
odel

Fig. A.8 illustrates how varying either the flow-channel volume or
urface area influences the basic temperature model given in Eq. (3).
he volume impacts the arrival time or breakthrough of the thermal

ront but does not alter the shape of the curve after breakthrough. For a
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Fig. A.8. Example thermal breakthrough curves for the basic model (3). (Left) The flow-channel volume controls how early thermal breakthrough can occur. However, for small
nough volumes, the volume effect on temperature becomes imperceptible and the flow-channel surface area dominates the temperature trend. (Right) The flow-channel surface
rea determines how rapidly the temperature declines after breakthrough. Model parameters were based on the prior mean values listed in Table 1, while the injection time-delay
as set to zero.
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ixed volume, the rate of temperature decline decreases with increasing
urface area or equivalently with decreasing fracture aperture. This
s unlike the uniform aperture fracture model considered by Hawkins
t al. (2018, 2017), which has an ideal-dipole flow pattern.

Hawkins et al. (2018, 2017) observed that varying the mean aper-
ure in their ideal-dipole model had a negligible effect on simulated
emperatures. The reason is that varying the aperture does not change
he effective surface area available for thermal conduction in the ideal-
ipole model since the flow pattern is fixed. Instead, the aperture only
ontrols the fracture volume in that model, and the surface area effect
vershadowed the volume effect for the realistic range of aperture
alues considered in Hawkins et al. (2018, 2017). Using the basic model
3), the temperature profiles can vary more with aperture as shown in
ig. A.8.

The derivation of the basic model assumes that the aperture is
uch smaller than the width of the fracture. However, the model

s often applied, in practice, using parameter combinations which
re inconsistent with that assumption. For instance, after estimating
low-channel volumes using inert tracer tests, geothermal modelers
ometimes generate conservative or pessimistic temperature forecasts
y choosing an aperture or a surface area representative of a square or
ircular flow-channel cross-section (Axelsson et al., 2001, 2005). The
esulting forecasts are pessimistic since they are based on adopting
minimal heat-transfer surface area for a given fracture volume and

ength.
The temperature curves shown in Fig. A.8 were generated loosely

ased on the lab experiment discussed in Section 3. Note that some
f the parameter combinations, which were chosen for illustrative pur-
oses, are close to or just beyond the limit of what could be considered
hysically reasonable. The aperture values are reported based on the
arrow fracture assumption that 𝑏𝑖 = 𝑉𝑖∕𝐴𝑖, although that may result
n aperture values which are off by a factor of two, since the effective
eat-transfer surface area for the square cross-section limit is 2𝑉𝑖∕𝑏𝑖.
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