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Abstract  16 

 17 
We present the PoreFlow-Net, a 3D convolutional neural network architecture that provides fast 18 
and accurate fluid flow predictions for 3D digital rock images. We trained our network to extract 19 
spatial relationships between the porous medium morphology and the fluid velocity field. Our 20 
workflow computes simple geometrical information from 3D binary images to train a deep neural 21 
network (the PoreFlow-Net) optimized to generalize the problem of flow through porous materials. 22 
Our results show that the extracted information is sufficient to obtain accurate flow field predictions 23 
in less than a second, without performing expensive numerical simulations providing a speed-up 24 
of several orders of magnitude. We also demonstrate that our model, trained with simple synthetic 25 
geometries, is able to provide accurate results in real samples spanning granular rocks, 26 
carbonates, and slightly consolidated media from a variety of subsurface formations, which 27 
highlights the ability of the model to generalize the porous media flow problem.  The workflow 28 
presented here shows the successful application of a disruptive technology (physics-based 29 
training of machine learning models) to the digital rock physics community. 30 
  31 



2 
 

1. Introduction 32 

Understanding how fluids travel through porous structures of subsurface rock formations is crucial 33 
for designing groundwater management, hydrocarbon extraction (Raeini, Blunt, & Bijeljic, 2014), 34 
CO2 sequestration (Chen, Li, Valocchi, & Christensen, 2018), and contaminant remediation 35 
projects (Kang, Lichtner, & Zhang, 2007). Currently, most of the energy that we use comes from 36 
hydrocarbons extracted from oil and gas reservoirs, most of the water for human consumption 37 
travels through underground aquifers, and the first pilot projects of CO2 sequestration in the 38 
subsurface are yielding positive results. For these reasons, it is paramount to accurately describe 39 
the flow physics of these fluids to maintain energy security, water availability, and to potentially 40 
avoid climate change (Blunt, 2017). 41 
 42 
One of the most impactful properties in the decision-making process for the areas mentioned 43 
above is the permeability of the underground reservoir of interest. This quantity provides a 44 
directional, volume-averaged geometric measure of the ease for a fluid to flow through a specific 45 
rock volume. The permeability is determined by the topology of the porous structures of the 46 
formation, and it is calculated by computing average velocity (based on the fluid velocity through 47 
pore space) and comparing it to Darcy’s law (see Equation 1). This quantity is researched 48 
primarily to assess preferential flow channels in the subsurface (contaminant tracing, hydrocarbon 49 
movement in an oil reservoir), bottlenecks for fluid flow, and to estimate well flow rates 50 
(hydrocarbon and water extraction, and CO2 sequestration). The permeability is shaped by the 51 
processes that generate and preserve the rock formation, and the subsequent alterations 52 
throughout geological time. Processes such as deposition of grains in a basin, compaction of 53 
layers caused by overburden pressure, cementation, recrystallization, and dissolution, change 54 
the microscopic structure of the rock, altering the shapes and sizes of the flow paths available. 55 
These effects modify the permeability of the rock formation (that can span up to kilometers). Since 56 
the behavior of the fluids at the smaller scales is key to make inferences of larger domains, in this 57 
paper we are going to focus on the flow of fluids at the microscale. 58 
 59 
There are different methods to obtain the flow properties of a rock. Laboratory measurements are 60 
able to obtain the average permeability of a sample through direct measurement. Nevertheless, 61 
it is not possible to observe the microscopic physics at the pore-scale. These laboratory 62 
measurements also tend to take longer times or even fail in tight porous media (lower porosity). 63 
On the other hand, there are existing analytical expersions that estimate the permeability of a rock 64 
based on fitting parameters that account for the rock type (lithology), grain size distribution, and 65 
depositional processes, among others. These require a minimal amount of information, but they 66 
are restricted to a particular rock (sometimes even from a specific geographical location) (Xu & 67 
Yu, 2008). Finally, there are several numerical simulation methods to reproduce the fluid flow 68 
physics (Blunt et al., 2013; Mehmani, Verma, & Prodanović, 2020). Among these, direct 69 
simulation methods (DSM) are very attractive because they resolve the flow through irregular 70 
geometries, giving the final user a realistic snapshot of how the fluid flows through the pores of 71 
subsurface formations. Since the subsurface is highly heterogeneous over multiple scales, direct 72 
simulation on a variety of samples at various scales extracted from wells or outcrops of the 73 
reservoir or analogous rock of interest provides valuable information to investigate and model 74 
subsurface flow for improved subsurface management.  75 
 76 
With the rapid development of x-ray scanners and other non-destructive imaging technologies 77 
(Mees, Swennen, Geet, & Jacobs, 2003), the simulation of fluid flow through 3D images of porous 78 
materials is a topic of increasing interest. The typical workflow for performing direct simulations 79 
starts with a gray-scale volume (the output of the x-ray scanner), which is then segmented (to 80 
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eliminate artifacts and noise) in two phases (binary image) that are discretized into voxels (3D 81 
pixels) of solid or space for fluid to flow. These simulations provide an accurate picture (with 82 
resolution of micrometers, and even smaller) of how fluid flows through complex geometries. With 83 
the advances in computational performance, larger domains are practically simulated. 84 
Nevertheless, computing times (even on supercomputer clusters) can be long, and the required 85 
computational resources are vast. The computational demand of these methods grows at least at 86 
the cube of the side length of the domain for homogeneous cubic samples, so in most cases 87 
running direct simulations on a representative elementary volume with typical desktops is 88 
unfeasible. Additionally, real materials tend to have pore size distributions that span and vary over 89 
a wide range of scales, which increases the size of a representative elementary volume, and thus 90 
the computational time to perform the simulations. 91 
 92 
There are several numerical methods that are used to obtain flow properties directly from 93 
3D  images: the finite volume method (Jenny, Lee, & Tchelepi, 2003), smoothed particle 94 
hydrodynamics (Tartakovsky & Meakin, 2005),  the finite element method (White, Borja, & 95 
Fredrich, 2006), the lattice Boltzmann Method (LBM), among others. A comparison of some of 96 
these methods, and their run times can be found in (Yang et al., 2016). In this work we utilize the 97 
LBM due to its simplicity for performing simulations in irregular domains, and its well-tested 98 
capabilities to simulate flow through porous materials (Pan, Hilpert, & Miller, 2004; Santos, 99 
Prodanović, Landry, & Jo, 2018). Although the method is easily parallelizable, its computational 100 
time scales increase with domain complexity (Figure 1), which is common to every method that 101 
operates on porous materials. We stress, however, that the workflow presented here does not 102 
depend on the method chosen to obtain the fluid velocity field. 103 
 104 
Recently, deep learning methods have been introduced as a framework for computers to learn 105 
from observational data of physical phenomena to predict variables of interest. These methods 106 
have been applied to study many problems in image segmentation, pattern recognition and image 107 
captioning, and natural language processing. Deep learning methods benefit from benchmark 108 
datasets since: (1) supervised deep learning methods require a large amount of validated data to 109 
train models; and (2) the capabilities of the trained classifiers must be assessed quantitatively. 110 
These algorithms have been applied successfully to digital rock applications like image 111 
segmentation (Andrew, 2018; Bihani et al., 2019; Karimpouli & Tahmasebi, 2019b), calculation of 112 
wave propagation through a solid matrix (Karimpouli & Tahmasebi, 2019a), 3D rock 113 
reconstruction using generative models (Mosser, Dubrule, & Blunt, 2018), and 2D calculations of 114 
permeability in small domains (Wu, Yin, & Xiao, 2018). Either segmented real images or porous 115 
media reconstructions are required for direct simulation of flow. There are several challenges 116 
encountered in applying deep neural networks to predict flow through porous media (or upscaled 117 
transport properties of a porous medium). The biggest challenge is the large number of labeled 118 
pairs of data (that can come in the form of interpreted seismic cross-sections, segmented images, 119 
simulation results, etc.) required to train a model. In addition, performing numerical simulations of 120 
porous volumes could require days of computation on hundreds of cores of a supercomputer to 121 
converge (Figure 1). Moreover, acquiring the prerequisite many volumes of a similar formation is 122 
often challenging, since access to the required imaging technologies (i.e. x-ray scanners) is 123 
limited, and finally, given access to a large training set, there is still a memory limitation challenge 124 
(more on this in the sections below). To circumvent the above difficulties, we create benchmark 125 
datasets reusing images from Digital Rocks Portal (Prodanovic, Esteva, Hanlon, & others, 2015) 126 
that are publicly available, and propose a comprehensive workflow to obtain a functional 127 
relationship between a 3D binary image and the volumetric solution of the Navier-Stokes 128 
equation. 129 
 130 
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In the context of fluid flow, Carrillo et al (Carrillo, Que, González, & López, 2017) trained an 131 
artificial neural network to predict the shape and coordinates of an occlusion blocking a 2D pipe, 132 
using only the velocity at points along the horizontal direction (representing sensors) as input 133 
data. Moreover, Guo et al (Guo, Li, & Iorio, 2016) trained a convolutional neural network (CNN) 134 
to predict velocity fields of a steady state flow with an obstacle (represented by simple geometries) 135 
for small domains with closed boundaries, they used the distance transform of the binary image 136 
as the model input. For single-phase, time-dependent problems, Hennigh (Hennigh, 2017) 137 
proposed the Lat-Net, a convolutional neural network architecture that compressed the output of 138 
an LBM simulation (to be memory efficient), and learned the relationship between subsequent 139 
(compressed) time steps. Specifically, for porous media applications, Wu (Wu et al., 2018) applied 140 
a CNN architecture with a fully connected layer to predict the permeability of 2D images. Sudakov 141 
(Sudakov, Burnaev, & Koroteev, 2018) applied simple 2D/3D architectures to predict the absolute 142 
permeability a system obtained by a pore-network model (a technique  which simplifies the pore 143 
space into a network of spheres interconnected by cylinders, losing all the complex features of 144 
the image). The authors of this paper (Santos, Prodanović, & Pyrcz, 2018) initially proposed a 145 
CNN that used the Euclidean distance as an input to predict the velocity field. Nevertheless, the 146 
network was not able to generalize to predict for more heterogeneous pore geometries. Kamrava 147 
et al (Kamrava, Tahmasebi, & Sahimi, 2020) showed that by using 3D convolutions their model 148 
was able to predict permeability for realistic pore geometries. That paper also provides a detail 149 
explanation of all the main components of a convolutional neural network and we refer it to any 150 
reader who is not familiar with the basic structure of a neural network. The key difference of our 151 
work is that we are able to use large 3D domains with pore geometry that is more complex than 152 
in previously published work. Further, compared to other porous media work to date, we are able 153 
to predict the fluid 3D velocity field, instead of only trying to predict the permeability value.  154 

In this work, our main contribution is a new 3D deep learning workflow that is able to generalize 155 
the single-phase flow of a fluid through granular materials. We show that by combining a feature 156 
extraction algorithm, a custom loss function, and a new network architecture, our model can be 157 
trained with very simple 3D geometries, and predict accurately in examples of varying sizes and 158 
complexity. These predictions require less than a second of computation on a typical desktop 159 
computer with a graphics processing unit (GPU), and are comparable in accuracy to the full-160 
physics simulation that might require days of processing on a supercomputer cluster. We will also 161 
provide a comprehensive 3D data set that spans a wide range of rock formations all around the 162 
globe. 163 
 164 
 165 

2. Methods 166 

In this section, we present the numerical method used for simulating the flow physics, the 167 
morphological feature extraction algorithm, and the architecture of the PoreFlow-Net. 168 
 169 

2.1 Velocity field simulation 170 

To simulate the fluid flow through the domains of interest, we selected the lattice Boltzmann 171 
method (LBM) (Sukop & Thorne, 2007). Nevertheless, the results of this work are independent of 172 
the numerical method used to solve the flow physics. The LBM is one of the most popular methods 173 
for performing direct simulation of fluid flow through irregular geometries. This method simulates 174 
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the streaming and collision of particles on a grid,  and it has been demonstrated  that is able to 175 
recover the full Navier-Stokes equation solution  (Frisch, 1991). The advantages of the LBM are 176 
that the algorithm is relatively easy to implement, is highly parallelizable, and it can perform direct 177 
simulations on images. 178 
 179 
We used the same model proposed by Pan (Pan, Luo, & Miller, 2006) with a relaxation time 180 
(related to the fluid viscosity) equal to one. It is a slightly compressible model, where a very small 181 
pressure gradient (1e-6 lattice units, independent to the permeability of the domain) is applied to 182 
drive the fluid forward. All the simulations are in the laminar flow regime (where the Reynolds 183 
number is much smaller than one). This is consistent with the typical flow regime through 184 
subsurface formations away from fractures or boreholes. 185 
 186 

 187 
Figure 1: LBM running times (in seconds) for different domains of the same computational size 188 
(spherepacks and tight sandstones of 5003 cells) indicating the impact of porosity (of our particular 189 
domains) on computational time. In these domains, the lower porosity samples host more intricate 190 
pathways (pore space with higher surface area and higher tortuosity), which increase the number 191 
of LBM iterations needed to achieve convergence. We run the simulations in eight Xeon E5-2690 192 
v3 (Haswell) processors totaling 96 computing cores (https://portal.tacc.utexas.edu/user-193 
guides/lonestar5). The dotted horizontal line represents an hour, the dashed line a day, and the 194 
solid 2 days of running time. The sample that took the longest had very tight pore throats and a 195 
low coordination number between pores (resulting in very poor connectivity), this yields in a large 196 
number of iterations for the momentum to equilibrate. 197 
 198 

Upon convergence, the LBM simulation outputs the 3D velocity field tensor of the image. To 199 
calculate the permeability of the domain, we use Darcy’s law (Bear & Bachmat, 1991): 200 

𝑘 =
𝑣

𝜇

𝑑𝑝

𝑑𝑧
    (1),  201 

where 𝑣 represents the mean of the velocity field in the direction of the pressure gradient 
𝑑𝑝

𝑑𝑧
, and 202 

𝜇 refers to the dynamic viscosity of the fluid. To calculate  𝑣 we calculate the average of the 3D 203 
velocity matrix in the direction of flow. The permeability expresses the flow rate as a function of 204 
pressure gradient, it has units of length squared, and it is typically expressed in m2 or in Darcys.  205 

2.2 Feature extraction 206 

https://portal.tacc.utexas.edu/user-guides/lonestar5
https://portal.tacc.utexas.edu/user-guides/lonestar5
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The typical bottlenecks for deep learning applications are the: (1) vast amount of data required to 207 
train a model, and the (2) memory limitations of the computational systems to perform the training 208 
of a deep neural network. To overcome these issues, we added to our workflow a pre-training 209 
feature extraction step where we extract relevant morphological features of the rock volume. 210 

Since our simulations are time consuming (spanning from hours to days in our cluster), it would 211 
be impractical to run domains hosting every possible 3D structure. By adding additional input 212 
features to the model, our network is trained to find a more robust functional relationship of the 213 
image with the flow field. It is worth noting that these features are computed in seconds, requiring 214 
a minimal computational demand compared to the fluid flow simulation. Moreover, since it would 215 
be computationally difficult to train the model using the entire simulation domains (>5003 voxels), 216 
we split the input and output images in subsamples to carry out the training process. Since the 217 
subsampled volumes are shuffled in a training pool along with other examples from different 218 
domains, including information of the boundaries (local with Euclidean distance, and global with 219 
the time of flight) gives the model knowledge about the original spatial location of the individual 220 
subsample (this process is depicted in Figure 5). 221 
 222 

We compute four geometrical features from the binary image (Figure 2). To represent the local 223 
characteristics of the binary image, we extracted the Euclidean distance map (also known as the 224 
distance transform) of each sample. This is calculated with the following equation: 225 

𝐸𝑑𝑖𝑠𝑡 =  (  (x1 − x2)2 +  (y1 − y2)2 + (z1 − z2)2 )
1

2      (2). 226 

Where x1 and 2, y1 and 2, z1 and 2 are the coordinates of each point of the solid and the fluid 227 

boundaries respectively. This map provides a compact representation of the distribution of space 228 
available for fluid to flow, and the distance to the closest solid (no-flow) boundary. Next, a 229 
maximum inscribed sphere (MIS) map in the direction of flow (i.e. an MIS flood) is computed. This 230 
map is a simplified and lightweight representation of a non-wetting fluid injection in the direction 231 
of flow. Although MIS floods are typically used to describe two-phase flow, here it acts as a 232 
measure of geometry (size of pore space) and topology (connectivity to neighboring pore 233 
structures to similar size). The MIS map provides information about the local pore space 234 
characteristics, as well as the global simulation conditions. It acts as a bridge between the whole 235 
domain and its subsamples. Finally, to inform the network about the global conditions of the 236 
domain before subsampling it, we employed a detrended time of flight (ToF). We use the fast 237 
marching algorithm (Hassouna & Farag, 2007) to compute the shortest distance of all the points 238 
of the domain to a point source (in this case, either the XY-plane located at the inlet or the outlet). 239 
This method solves the boundary value problem of the Eikonal equation (Hassouna & Farag, 240 
2007) represented by: 241 

|∇𝑡(𝑥)| =
1

𝑓(𝑥)
  ,   (3) 242 

 243 
Where t represents the time of flight and f(x) stands for the speed at every location  of the image 244 
(a constant in our case). For our case, the speed of the void space is set to one, while the solid 245 
matrix is set to zero (impermeable). The result of this operation is a map where each of the voxels 246 
of the void space are labeled with a number that depicts the shortest distance (in voxels) to the 247 
boundary (the first few layers in the z-coordinate will be given consecutive numbers starting from 248 
one, until they find a solid obstacle, then the number sequence will continue around the obstacle).  249 
We then subtract the time of flight of the image map without solid obstacles (an image with a 250 
porosity of 100%), to calculate a detrended (normalized) map as shown in Figure 02. This feature 251 
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provides data on tortuosity of the global paths within the domain. In addition, it supplies the model 252 
implicit information about the neighboring subsampled blocks. We compute two features using 253 
this method. One, where the point source is located at the inlet of the numerical simulation, and 254 
the second one where the source is at the outlet (both pressure gradient boundary conditions).  255 

 256 
 257 
 258 

 259 

 260 

 261 

These features have been used in literature to characterize porous materials. Nevertheless, since 262 
the relationship of these features with the velocity field is highly non-linear, the selection of the 263 
ultimate set of features shown above was a trial-and-error process. These features do not provide 264 
an exhaustive description of a 3D porous material. However, they deliver enough information to 265 
our model about the local and global boundary conditions of the domain to be able to structure a 266 
relationship (in the form of a convolutional neural network model) between these inputs and the 267 
Navier-Stokes solution. 268 

 269 

2.3 Network 270 

2.3.1 Convolutional neural networks 271 

Convolutional neural networks (CNNs) have excelled in the field of computer vision outperforming 272 
classical machine learning methods (Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bengio, & 273 
Hinton, 2015). These models have shown a remarkable capacity to find complex relations in big 274 
data sets. By utilizing the discrete convolution operation instead of a regular matrix multiplication 275 
(i.e. a fully connected feed-forward network), they generalize local spatial relationships (sparse 276 
interactions) across the domain. CNNs utilize filters that are much smaller than the input image, 277 
which extract general and meaningful information about the domain in an efficient manner.  By 278 
stacking convolutional layers, the network extracts features at different levels of abstraction with 279 
an increasingly wider receptive field (Figure 03). Finally, the convolution layers are equivariant to 280 
translation, which means that if the input feature is shifted, their output will be shifted by the same 281 
amount (by creating, in this case, a 3D feature map). This is particularly useful in pattern 282 
recognition, because they allow for inputs of variable size. Using this structure, a network can be 283 
trained to learn complex, non-linear relationships between inputs and outputs using the 284 
backpropagation algorithm. 285 

Figure 2: 2D example of the four morphological features (Euclidean distance, maximum inscribed 
spheres, and time of flight from left and from right, respectively) that we compute from a binary image 
(Liu, Wang, & Song, 2017) to train the network. The areas where the value of the matrix is zero (i.e. 
solid phase voxes) are shown in black. 
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 286 

Figure 3: Schematic of three subsequent convolution operations with a 3x3x3 filter and a stride 287 
(kernel distance of where the next convolution operation is performed) of two. The network is 288 
trained to create a more compact (latent) representation, while retaining relevant features of the 289 
original image. Although the image loses the structure to the human eye, it retains the most 290 
significant information to the network. This operation allows to capture local and global spatial 291 
relationships by convolving over the output of the previous convolutional block. It is also cheaper 292 
to train because it has a smaller number of parameters (smaller filters) compared to a fully 293 
connected network. 294 

 295 

2.3.2 PoreFlow-Net 296 

Recent studies suggest that the performance of a network can benefit from increased depth 297 
(longer stack of layers, as described in Section 2.3.1) (Szegedy et al., 2015; Urban et al., 2016). 298 
Apart from being computationally more intensive, a deeper network presents issues like vanishing 299 
and exploding gradients (Pascanu, Mikolov, & Bengio, 2012), and filter saturation by highly 300 
correlated features, making them very hard to train. To improve the gradient propagation and to 301 
enhance the training, He et al. (He, Zhang, Ren, & Sun, 2016) proposed the residual network 302 
(ResNet). The ResNet concatenates an identity map to the output of a convolutional layer stack 303 
(residual unit) to facilitate training. The authors show that the training is eased by targeting this 304 
new referenced residual output, avoiding gradient vanishing or saturation. Further, Ronneberger 305 
et al. (Ronneberger, Fischer, & Brox, 2015) proposed the UNet.  This architecture concatenates 306 
feature maps from different layers of the encoding branch to the decoder, improving segmentation 307 
accuracy significantly. One of the main advantages of this is that the structure of the network 308 
retains high (i.e. lines and edges) and low-level features (i.e. entire objects) to reconstruct the 309 
output. They show that the networks train with ease and with fewer parameters due to the better 310 
flow of information (both in the forward and backward computations) that the skip connections 311 
(direct pathways between the encoding and decoding branch) provide. Building up from these 312 
two architectures, Zhang (Zhang, Liu, & Wang, 2018) presented the Deep Residual U-Net 313 
(ResUnet) which uses residual units as building blocks and skips connections between them. This 314 
network prove to be easy to train (compared to the U-Net that needed extensive data 315 
augmentation or a pre-trained model), with an efficient number of parameters and showed 316 
accurate results using a small training set. 317 
 318 
In this paper, we propose a modification of the ResUnet, which benefits from the information of 319 
all the input features by passing them through individual encoding branches (dedicated to each 320 
of the extracted features from Section 2.2) with skip connections. We use three residual units for 321 
each of the four branches, a bridge, and a single decoder to recover the velocity field. Each of 322 
these parts are built with residual units (Figure 04). We use the scaled exponential linear unit 323 
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(SeLu) (Klambauer, Unterthiner, Mayr, & Hochreiter, 2017) as the activation function. This is 324 
described by the following equation: 325 
 326 

𝑆𝑒𝐿𝑢(𝑥) = λ {
𝑥                       𝑖𝑓 𝑥 > 0
𝛼𝑒𝑥 − 𝛼          𝑖𝑓 𝑥 > 0

,        (4) 327 

 328 

where the values of 𝛼 and λ are fixed and provided in the publication. The purpose of this function 329 
is to perform additional internal normalization of the inputs, facilitating gradient propagation. 330 
According to the derivation of the authors, problems like gradient exploding or vanishing are 331 
mathematically infeasible. Moreover, since internal normalization is cheaper, the network 332 
converges faster.  333 
 334 
Since the velocity distribution spans several orders of magnitude (Figure 6), we use L1 (mean 335 
absolute error) as the cost function due to the large number of outliers (velocity tending to zero 336 
near the grain boundaries). To increase the attention in tighter geometries we compute the loss 337 
as follows: 338 
 339 
𝐿 = ∑(|𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑| ∗ 𝑀),         (5) 340 

 341 
Where M is a weight vector that accounts for the size of the pores in the direction of flow and ∗ 342 
stands for an element-wise multiplication. The algorithm to calculate M can be found in Appendix 343 
A1. The loss function (Equation 5) weights the difference between the true values and the 344 
predictions so that all the voxels in the training pool have the same relevance (high and low 345 
porosity subsamples). 346 
 347 
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 348 

Figure 4: PoreFlow-Net architecture consisting of four input branches and one decoder. A batch 349 
normalization layer and an activation follow every convolutional layer.  Instead of using 350 
deconvolutional layers, the decoder resizes the image using upsampling. It has been shown 351 
(Gauthier, 2015) that the pixel overlap in deconvolution layers causes artifacts which increase in 352 
higher dimensions. In the case of a 3D deconvolution, some voxels will get six times the number 353 
of input information (because the filters visit these locations several times) compared to their 354 
neighbors. Since these operations have multiple channels, the network struggles to learn the 355 
appropriate weights to reconstruct the output image without artifacts. To avoid these artifacts and 356 
increase the memory efficiency, our image is resized using an upsampling layer, which repeats 357 
the input by a factor of two in all the coordinate directions (with no trainable parameters, making 358 
it cheaper). 359 
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 360 

Figure 5: Our workflow. Starting from a binary 3D matrix (left), we compute four geometric features 361 
(Section 2.2). The two on the top describe the medium locally, while the two bottom ones provide 362 
information about the global domain. These features are computed on the fly for every sample. 363 
Then, these features are subsampled (black lines) to train the neural network model. The output 364 
is the fluid velocity field in the direction of the pressure gradient. With different colors, we 365 
highlighted the different orders of magnitude of the velocity field prediction. 366 

 367 

2.4 Training data 368 

2.4.1. Dataset creation 369 

 370 

We used a beadpack comprised by a disordered closed pack of spherical grains, originally imaged 371 
experimentally by John Finney (Finney & Prodanovic, 2016) as our initial domain. A 5003 subset 372 
of the original spherepack was discretized and segmented to generate training data.  373 
 374 
We performed four one-pixel grain dilations to the original sample, where we obtained four images 375 
of decreasing porosity (increasingly tighter) that mimic cementation processes in the subsurface, 376 
but preserves the simple features of the original spherepack. These samples range from 29.8% 377 
to 11% porosity. Finally, we performed a single-phase LBM flow simulation in these four samples 378 
where a pressure gradient parallel to the z-coordinate direction was applied with a no-flow 379 
boundary condition in the other faces. Since the domains are homogeneous packs of spheres, 380 
the simulation converges much faster (in the order of hours) than for real rock x-ray scans. We 381 
used these four samples to train the convolutional neural network.  382 
 383 

2.4.2 Relationships between inputs and outputs 384 

The lattice Boltzmann simulation outputs a pressure matrix and a velocity tensor in each point of 385 
the grid. In this work, we focused on the z-component of the fluid velocity (parallel to the pressure 386 
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gradient) which determines the permeability. In Figure 6 we show the velocity distribution and its 387 
relationship with the morphological features extracted from the binary image. 388 

 389 

Figure 6: In the left side, a heat map of the signed velocity logarithm (smaller absolute values 390 
represent higher velocities, sign represents direction) versus Euclidean distance. The velocity has 391 
a bimodal (positive and negative directions) distribution; hence it has a non-unique relationship 392 
with the Euclidean distance. Consequently, the plot shows a higher scatter around the small 393 
velocities and Euclidean distances. To the right, the scatterplots of maximum inscribed sphere 394 
and Time of Flight versus velocity. Heteroscedastic, multimodal behaviors and non-linear 395 
correlations are observed.  396 
 397 

From the relationships exhibited in Figure 06, we can confirm that traditional machine learning 398 
methods would not be able to obtain an accurate model due to the complex, highly non-linear 399 
relations between the inputs and the target output.  400 
 401 

3. Results 402 

3.1 Impact of the proposed 3D feature extraction  403 

As stated above, it would not be feasible to train our network over the entire simulation domains. 404 
Hence, it is necessary to subsample the 3D matrices into smaller volumes to train the model in 405 
batches of data. The reasoning behind this is that GPUs have a limited amount of memory, and 406 
the model parameters, the inputs and outputs, the gradients, among others must be locally stored. 407 
In our experiments, the maximum subset size that conventional hardware could accommodate in 408 
memory was no larger than 803. The model, as described by Figure 4 requires 2.7 gigabytes (Gb) 409 
of memory to be trained with a batch size of one sample. To train the CNN with entire simulation 410 
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domains one would require approximately 660 Gb of memory available, which greatly exceeds 411 
the current capabilities of graphic processing units.  412 
 413 
Spatially aware neural networks, benefit greatly from stationary samples because it is easier to 414 
find matching patterns in data. In theory, the subset size of the 3D sample should be equal or 415 
larger than the representative element volume (REV) (Bachmat & Bear, 1987) to exhibit a 416 
stationary behavior of the property of interest (in this case, velocity), impacting in a positive 417 
manner the training performance of the neural network. If the subset data size is smaller than the 418 
REV, we cannot expect to have a stable measure due to the non-stationarities (in the form of 419 
spatial heterogeneities) present in the data.  420 
 421 
To show the importance in the training of the network of our proposed feature extraction step, we 422 
carried out a moving window analysis to assess the variability of the domains with different volume 423 
sizes (Pyrcz & Deutsch, 2014). Using a window of increasing size length, we calculate the 424 
coefficient of variation (the ratio of the mean over the standard deviation) of the porosity and fluid 425 
velocity within the subset. We carried out this experiment in the original spherepack (36% 426 
porosity, before the grain dilations where performed). We executed this procedure iteratively until 427 
the variation became not significant. We plotted the results of the moving window analysis in 428 
Figure 7. Both of the subplots show the decrease in variability of porosity and velocity respectively 429 
with the increase in the size of the window (due to the homogeneity of the sample). The 3D subset 430 
size comparison is shown in Figure 8. It is only after 2003 voxels per side (40% of the image side 431 
length) that the velocity field stabilizes (coefficient of variation is less than 1%). This behavior is 432 
more significant in tighter and less homogenous samples. 433 
 434 
Training the neural network using only the binary image of solid and pore as input will hamper the 435 
training process resulting in overfitting (it fails to generalize, causing the training and validation 436 
curves to diverge), and poor predictive performance (we carried out this experiment and the 437 
results are plotted in Figure 9). Since we are interested in creating a predictive model that is able 438 
to perform in different geometries, we show that using the additional inputs (which add additional 439 
information about the subvolume as well as how it relates to parts of the image surrounding it, the 440 
latter in the form of time of flight) described in Section 2.2, the model increases its training 441 
performance, and generalizes enough to predict the flow field (within acceptable error range) in a 442 
test set that includes various geometries. In other words, the model is able to find unique patterns 443 
to construct a robust function mapping the image with the fluid velocity. 444 
 445 
 446 
 447 
 448 
 449 
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 450 
 451 

Figure 7: Evaluation of representative element volume with coefficient of variation (CV) for 452 
porosity and velocity. The variability of porosity and velocity decreases with the increase in the 453 
window size.  454 
 455 

 456 

 457 

Figure 8: 3D visualization of the moving windows sizes of the stationarity analysis. Gray areas 458 
indicate grains whereas white portions represent pores. The blue cube represents a highly non-459 
stationary window size (Figure 7), the red cube is our selected subset size (803), and the green 460 
cube shows a stationary window size for the pictured domain. 461 
 462 

3.2 Model Training 463 

We implemented the model using the Keras python library (Chollet & others, 2015) with 464 
TensorFlow (Abadi et al., 2015) as the backend. The model is optimized by minimizing the cost 465 
function (Equation 5) using Adam (Kingma & Ba, 2014) with a learning rate of 1e-4. We used four 466 
sphere packs (that present four subsequent grain dilations from the original sample, as highlighted 467 
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in section 2.4.1), and subsampled them into 1080 803 cubes for training with a 20% random 468 
validation split (216 cubes). The model was trained with a mini-batch size of five, on a desktop 469 
with an NVIDIA Quadro M6000 GPU for 140 epochs. This model training process took twelve 470 
hours. The inputs and the outputs are transformed using the minmax transform constraining them 471 
from minus one to one. A comparison of the performance of three different model setups (training 472 
with the binary image only, training with the four proposed geometrical features, and training 473 
utilizing the features plus the custom loss function) is plotted in Figure 9. We observed a significant 474 
performance increase in the loss value when using the extracted features and the proposed loss. 475 
 476 
 477 

 478 
Figure 9:  Training and validation loss values for three different cases. The left plot shows the 479 
training performed with the binary image only, the middle plot shows where the four features 480 
(Euclidean distance, MIS, and the two ToF) are used, and the right plot shows the application of 481 
the proposed custom loss function. By using the binary image as the only input, the model overfits 482 
(validation curve rising) and its minimum value remains high. By training using the custom loss 483 
function, the performance is improved (the slope of the loss is higher) and it reaches a smaller 484 
value that the rest (dashed line). 485 
 486 
 487 
To assess the ability of the three trained models specified above to generalize the training data, 488 
we first tested the model using the original sphere-pack (unseen by the models, these were 489 
trained using the samples with the dilated grains only). The model trained with the binary input 490 
gave a relative error in permeability of several orders of magnitude. Whereas the one using the 491 
four input features returned and error 15 %, and finally the model trained using the features plus 492 
the custom loss gave a relative error of 13% when compared to the lattice-Boltzmann simulation. 493 
We carry out an extensive testing of the latter trained model in the sections below. 494 
 495 
 496 
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3.3 Model Testing  497 

Using the model trained with the four dilated spherepacks (Section 3.2), we tested its capabilities 498 
(vs the Navier-Stokes equation solution approximated by the LBM) on domains of different size 499 
and complexity. 500 

3.3.1 Fontainebleau sandstone dataset 501 

The first test set was obtained via a simulation of processes that occur during sedimentary rock 502 
formation (i.e., sedimentation, compaction, diagenesis, and cementation) to obtain 3D volumes 503 
that resemble the Fontainebleau Sandstone formation in France (Berg, 2016). These images are 504 
4803 voxels, and vary from 8 to 26% porosity. We show a cross section through the middle of four 505 
of the samples in Figure 10. 506 
 507 

 508 

Figure 10: XY-Cross sections of the Fontainebleau sandstones of the test set. The pore space is 509 
shown in black. Some of the structures have been disconnected from the bulk during cementation 510 
and compaction, making this test set very different from the homogenous spherepacks pore space 511 
in our training set. 512 
 513 

We present the results in Table 1. These are in very good agreement with the full-physics 514 
simulation (carried out to compare the performance of our model). To analyze the error more 515 
closely, we selected the worst performing sample (24% porosity sandstone) for further analysis. 516 
In Figure 11 we show a visual comparison (cross-section of the 3D volume orthogonal to the flow 517 
direction) of the lattice-Boltzmann solution with our model. It is visible that most of the relevant 518 
flow features are preserved. A comparison of the velocity histograms is shown in Figure 12. It is 519 
worth noting that the flow streamlines are not always continuous, and the 3D solution is not trained 520 
to satisfy mass balance (hence the relative error). Additional constraints can be added to honor 521 
this, but are out of scope for this work. In this work we are mostly interested in capturing the main 522 
flow characteristics (preferred paths and dead-ends) that impact permeability. 523 

 524 

Porosity Average relative error (voxel-
wise) in the pore-space 

True 
permeability [m2] 

Predicted 

permeability [m2] 
Relative 
error 

8% 0.75% 8.76e-14 10.86e-14 24% 

9.8 0.80% 2.35e-13 2.44e-13 4% 

12.4% 1.04% 4.97e-13 5.34e-13 7.23% 
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15.2 1.75% 1.47e-12 1.45e-12 1.44% 

17.5 2.25% 2.45e-12 2.61e-12 6.73% 

24% 4.36% 7.76e-12 8.56e-12 10.32% 

 525 

Table 1: Comparison of our model performance versus the LBM simulation on the Fontainebleau 526 
dataset. The average relative error refers to the error in the velocity parallel to the pressure 527 
gradient (z-coordinate). The average voxel-wise error shows a nonlinear relationship with the 528 
permeability relative error because the permeability is an average measure of the velocity 529 
considering the solid volume. Although the pixel-wise error increases with porosity, the 530 
permeability error (calculated using the mean velocity) shows no correlation with porosity. This is 531 
due to the fact that the highest errors are present near the grain boundaries (Figure 12), this 532 
values do not have a significant impact in permeability. 533 

 534 

 535 

Figure 11: XY Cross-section of the fluid flow simulated velocity in the z-direction (left), PoreFlow-536 
Net prediction (middle) and the relative error between these two (right) for the Fontainebleau 537 
sandstone with 24% porosity. The velocity is shown in a dimensionless scale going from one to 538 
minus one (minmax transform). The mean average error in the pore space is 4.36% as reported 539 
in Table 1. The highest errors (voxel-wise) are in the pore throats (which is also consistent in the 540 
velocity histogram in Figure 12). 541 

 542 

 543 

Figure 12: Histogram of true and predicted velocity (4803 points in lattice units) in the z-direction 544 
at every point of the domain. The comparison shows excellent agreement at high velocity, and a 545 
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slight disagreement on the lower range. We hypothesize that since the training was performed 546 
with spherepacks, by having paths that are more tortuous, hosting a higher amount of dead end 547 
pores, and more solid surface area, the network does not perform as accurately. Since the highest 548 
orders of magnitude in velocity have a greater effect in permeability, there is good agreement in 549 
the permeability magnitude (Table 1).  550 

3.3.2 Tests on different rock types 551 

To further test our model, we predicted the flow field for different rock types available in Digital 552 
Rocks Portal (Prodanovic et al., 2015). We first created a sample similar (in shape) to the original 553 
training image by performing numerical grain erosion. This creates a sample of larger porosity 554 
where grain boundaries are not as restrictive to fluid flow (where the permeability is higher). This 555 
case is of interest in irrigation (Garnier et al., 1998). We further tested the original sphere pack 556 
(the one that was numerically dilated to generate our training set). Our model yield accurate 557 
predictions in these two samples, even when the porosities where larger (where velocities that 558 
are also orders of magnitude higher) than the training set. We then tested the trained model on 559 
two outcrop sandstones, a limestone, and artificially created multiscale microsand image. In 560 
these, the relative error was not higher than 28% (Yang et al., 2016) show that different fluid flow 561 
solvers will have a comparable discrepancy among them, even when the same geometry is 562 
provided ). 563 
 564 
We present our results in Table 2, we show the different 3D domains of the test set in Figure 14, 565 
and a cross section of the results is shown in Figure 15. These geometries have different pore 566 
shapes, and in cases of limestone and microsand they have much wider pore size distribution 567 
compared to the training set (Figure 13).  They also have different absolute volume sizes. While 568 
two sandstones have similar absolute volume size (500 voxel on a side), the relative error for 569 
prediction is very different (1.06% and 27.30%) likely because they have different grain/pore 570 
distribution as well as different number of individual grains per side (which determines how well 571 
grain or pores are resolved). Note that our training set as well as the Fontainebleau sandstone 572 
test in previous section all have similar level of resolution and hence we saw a very good 573 
prediction for all cases in Table 1. Given that the training set was comparatively simple, we find 574 
the results in great agreement with the full-physics simulations.  575 
 576 

 577 
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 578 

Figure 13: Maximum inscribed sphere distribution for three of our samples. In orange, the training 579 
set, where the distribution is Gaussian and relatively narrow. In red and blue, the MIS distribution 580 
for the Bentheimer sandstone and microsand respectively. These distributions have a lognormal 581 
shape, which is due to the more heterogeneous pore structures.  582 

 583 

 584 

Sample Size 
[voxels3] 

Resolution 
[m/voxel] 

Porosity True 
permeability 
[m2] 

Predicted 
permeability 
[m2] 

Relative 
error 

Eroded sphere 
pack 

500 5.7E-6 42% 8.86e-11 6.76e-11 23.53% 

Sphere pack 500 5.7E-6 36% 5.26e-11 4.58e-11 12.96% 

Estaillades 
limestone 

650 3.3113E-6  11.8% 6.62e-13 6.99e-13 5.45% 

Microsand 
(artificial 
multiscale 
sample) 

500 3E-6 28.2% 5.64e-12 4.68e-12 17.01% 

Castlegate 
sandstone 

512 5.6E-6 20.5% 2.19e-12 2.17e-12 1.06% 

Bentheimer 
sandstone 

500 3.0035E-6  20.1% 3.77e-12 2.74e-12 27.30% 

Table 2: Results of the additional test set.  585 

 586 
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 587 

 588 

Figure 12: Additional test that includes: a) a slightly consolidated medium, b) Estillades limestone 589 
(Muljadi, 2015b), c) Castlegate sandstone (Sheppard & Prodanovic, 2015), d) multiscale 590 
microsand (Mohammadmoradi, 2017) and e) Bentheimer sandstone (Muljadi, 2015a), all of which 591 
are available at the Digital Rocks Portal. 592 
 593 

 594 
 595 

Figure 15: XY Cross-section of the simulated velocity (left), PoreFlow-Net prediction (middle) and 596 
the relative error between these two (right) for the Castlegate formation sandstone. The velocity 597 
is shown in a dimensionless scale going from one to minus one (minmax transform). The mean 598 
average relative error in the pore space only is 1% as reported in Table 2. 599 

 600 



21 
 

 601 

Figure 16: Permeability predictions vs true values. The PoreFlow-Net is able to predict a wide 602 
range of orders of magnitude. 603 

 604 

 605 

 606 

4. Conclusions 607 

 608 
We train a deep neural network architecture as a fast proxy to predict accurately the 3D physics-609 
based fluid flow velocity fields within digital rock samples. The relationship between details of pore 610 
geometry and flow field (with its integral measure of permeability) is complex and not easily 611 
predicted based on the geometry statistics alone. Nevertheless, this fundamental relationship 612 
allows describing how fluids move through subsurface formations, and is the cornerstone of many 613 
research projects in environmental, civil, petroleum engineering as well as in geological sciences.  614 
 615 
We demonstrated that our convolutional neural network generalizes the flow problem to predict 616 
flow velocity in rocks that host much more complex structures than the original training set. This 617 
is attributed to the capacity of the network to model the complicated relationships between pore 618 
shape and domain characteristics with the velocity field. The model performs well with rocks of 619 
varying types (different lithology), and of different grain distribution and porosities, where the 620 
permeability ranged several orders of magnitude (Figure 16). The PoreFlow-Net calculates fluid 621 
flow fields in less than a second on a typical desktop, compared with the standard simulation 622 
procedure, which takes hours to days in a supercomputer facility (depending on the hardware 623 
used as well as complexity of the digitized pore space geometry). Additionally, the model is a 624 
lightweight representation (around 25 Mb), whereas the full simulation results takes 20X the hard 625 
drive space. The model can be reused in any given geometry, while the simulation has to be run 626 
case-by-case. Future work should be focused on finding features that work with fractured domains 627 
and ultra-tight rocks. 628 
 629 
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This method provides a framework for different further applications such as component transport, 630 
relative permeability, rock-mechanics applications, formation factor, or resistivity. These models 631 
provide a straightforward way to assess important characteristics for improved subsurface 632 
management  without running expensive physical models and could possibly be a path to data-633 
based upscaling, given the proliferation of digital rock images as evidenced in the Digital Rocks 634 
Portal or online data available by different research groups (Blunt, 2015; Dorthe Wildenschild, 635 
2006).  636 
 637 
 638 

Reproducibility  639 

The code will be publicly available on the author’s repository (github.com/je-santos) and all the 640 
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 660 

A1. Calculating mask for custom loss function 661 

We calculate the weight matrix (Figure 17) using the following pseudocode: 662 
 663 

image_size = 500                     # length of the volume side 664 
for i in range( 0, image_size ):  # loop along the z-coordinate 665 
        porosity_z = np.sum(binary_im[:,:,i])/image_size^2  # calculate the porosity of the slice 666 
        solid_mask[:,:,i] = (1/porosity_z)*solid_mask[:,:,i]     # multiply by a term that weights lower 667 
porosity sections (Figure 17) 668 
    solid_mask[:,:,i][solid_mask[:,:,i]==0]=1  # replace the solids with a 1 669 
        solid_mask[:,:,i] = solid_mask[:,:,i]/sum(solid_mask[:,:,i])*image_size^2 # normalize 670 
 671 

Where the binary image is composed by a 3D matrix of zeros representing the solids and ones 672 
representing the space for fluid to flow. 673 
 674 

 675 
Figure 17: Cross section of the weight matrix (M). Areas with low porosity have a higher weight 676 
so that the network ‘focuses’ in those areas as well as in the bigger channels. 677 

 678 
 679 
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